a OncoRay - National Center for Radiation Research in Oncology , Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf , Dresden , Germany.
b Department of Radiation Oncology , Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany.
Acta Oncol. 2018 Feb;57(2):203-210. doi: 10.1080/0284186X.2017.1355107. Epub 2017 Aug 1.
The interplay effect might degrade the dose of pencil beam scanning proton therapy to a degree that free-breathing treatment might be impossible without further motion mitigation techniques, which complicate and prolong the treatment. We assessed whether treatment of free-breathing patients without motion mitigation is feasible.
For 40 lung cancer patients, 4DCT datasets and individual breathing patterns were used to simulate 4D dynamic dose distributions of 3D treatment plans over 33 fractions delivered with an IBA universal nozzle. Evaluation was done by assessing under- and overdosage in the target structure using the parameters V90, V95, V98, D98, D2, V107 and V110. The impact of using beam-specific target volumes and the impact of changes in motion and patient anatomy in control 4DCTs were assessed.
Almost half of the patients had tumour motion amplitudes of less than 5 mm. Under- and overdosage was significantly smaller for patients with tumour motion below 5 mm compared to patients with larger motion (2% vs. 13% average absolute reduction of V95, 2% vs. 8% average increase in V107, p < .01). Simulating a 33-fraction treatment, the dose degradation was reduced but persisted for patients with tumour motion above 5 mm (average ΔV95 of <1% vs. 3%, p < .01). Beam-specific target volumes reduced the dose degradation in a fractionated treatment, but were more relevant for large motion. Repeated 4DCT revealed that changes in tumour motion during treatment might result in unexpected large dose degradations.
Tumour motion amplitude is an indicator of dose degradation caused by the interplay effect. Fractionation reduces the dose degradation allowing the unmitigated treatment of patients with small tumour motions of less than 5 mm. The beam-specific target approach improves the dose coverage. The tumour motion and position needs to be assessed during treatment for all patients, to quickly react to possible changes, which might require treatment adaptation.
相互作用效应可能会降低铅笔束扫描质子治疗的剂量,以至于如果没有进一步的运动缓解技术,自由呼吸治疗可能是不可能的,而这些技术会使治疗变得复杂和延长。我们评估了是否可以对没有运动缓解的自由呼吸患者进行治疗。
对于 40 名肺癌患者,使用 4DCT 数据集和个体呼吸模式,模拟了 33 个分次使用 IBA 通用喷嘴进行 3D 治疗计划的 4D 动态剂量分布。通过评估目标结构中的 V90、V95、V98、D98、D2、V107 和 V110 参数下的剂量不足和剂量过高来进行评估。评估了使用特定光束的靶区体积的影响以及控制 4DCT 中运动和患者解剖结构变化的影响。
近一半的患者肿瘤运动幅度小于 5mm。与运动幅度较大的患者相比(V95 平均绝对减少 2%,V107 平均增加 2%,p<.01),肿瘤运动幅度小于 5mm 的患者剂量不足和剂量过高的情况明显更小。模拟 33 个分次治疗后,对于肿瘤运动幅度大于 5mm 的患者,剂量降解有所减少,但仍持续存在(V95 平均减少 <1%,p<.01)。特定光束的靶区体积减少了分次治疗中的剂量降解,但对于大运动更相关。重复 4DCT 显示,治疗过程中肿瘤运动的变化可能导致意外的大剂量降解。
肿瘤运动幅度是相互作用效应引起的剂量降解的指标。分次治疗减少了剂量降解,允许对肿瘤运动幅度小于 5mm 的小肿瘤患者进行无缓解治疗。特定光束的靶区方法提高了剂量覆盖。对于所有患者,在治疗过程中需要评估肿瘤运动和位置,以便快速应对可能需要治疗适应的变化。