Suppr超能文献

质子扫描中肺的相互作用效应:4D 蒙特卡罗研究评估肿瘤和射束传输参数的影响。

Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

机构信息

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Phys Med Biol. 2013 Jun 21;58(12):4137-56. doi: 10.1088/0031-9155/58/12/4137. Epub 2013 May 20.

Abstract

Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation.

摘要

肿瘤与扫描质子束之间的相对运动导致剂量分布的劣化(相互作用效应)。本研究调查了束扫描参数与相互作用效应之间的关系,目的是找到最小化相互作用效应的参数。使用五个不同肿瘤大小(50.4-167.1cc)和运动幅度(2.9-30.1mm)的肺癌患者的 4DCT 几何形状,对铅笔束扫描质子治疗进行了 4D Monte Carlo 模拟。假设以 35×2.5Gy(RBE)的分数进行治疗。对于五个患者中的每一个,都改变了光斑大小、改变束能量的时间(τes)、磁体稳定所需的时间(τss)、初始呼吸阶段、光斑间距、扫描方向、扫描速度、束电流和患者呼吸周期。对单次分割和常规分割进行了模拟。对于考虑的患者,仅使用上下运动幅度不能预测相互作用效应。较大的光斑尺寸(σ9-16mm)不易受相互作用影响,在单次分割中产生的均匀剂量(EUD)为 99.0±4.4%(1 个标准差),而较小光斑(σ2-4mm)的 EUD 为 86.1±13.1%。较小的光斑尺寸在单次分割中 EUD 值低至处方剂量的 65.3%。减小光斑间距可改善靶区剂量均匀性。初始呼吸阶段对相互作用有显著影响,特别是对于较短的治疗时间。平行或垂直于运动的主要轴扫描时,没有明显的好处。较长的呼吸周期会降低 EUD。一般来说,较长的治疗时间会导致相互作用效应降低。常规分割在相互作用方面有显著改善,小光斑和大光斑的 EUD 分别至少为处方剂量的 84.7%和 100.0%。相互作用效应高度取决于患者的个体情况,取决于运动幅度、肿瘤位置和治疗参数。在单次分割中观察到剂量分布的严重劣化,但使用常规分割可显著改善。

相似文献

1
Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.
Phys Med Biol. 2013 Jun 21;58(12):4137-56. doi: 10.1088/0031-9155/58/12/4137. Epub 2013 May 20.
2
Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer.
Int J Radiat Oncol Biol Phys. 2013 Jun 1;86(2):380-6. doi: 10.1016/j.ijrobp.2013.01.024. Epub 2013 Feb 22.
4
On the interplay effects with proton scanning beams in stage III lung cancer.
Med Phys. 2014 Feb;41(2):021721. doi: 10.1118/1.4862076.
5
Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning.
Phys Med Biol. 2015 Apr 7;60(7):3013-29. doi: 10.1088/0031-9155/60/7/3013. Epub 2015 Mar 19.
6
A study of the beam-specific interplay effect in proton pencil beam scanning delivery in lung cancer.
Acta Oncol. 2017 Apr;56(4):531-540. doi: 10.1080/0284186X.2017.1293287. Epub 2017 Feb 25.
10
Efficient Interplay Effect Mitigation for Proton Pencil Beam Scanning by Spot-Adapted Layered Repainting Evenly Spread out Over the Full Breathing Cycle.
Int J Radiat Oncol Biol Phys. 2018 Jan 1;100(1):226-234. doi: 10.1016/j.ijrobp.2017.09.043. Epub 2017 Oct 4.

引用本文的文献

2
On the Way to Accounting for Lung Modulation Effects in Particle Therapy of Lung Cancer Patients-A Review.
Cancers (Basel). 2024 Oct 25;16(21):3598. doi: 10.3390/cancers16213598.
6
Dosimetric Evaluation and Reproducibility of Breath-hold Plans in Intensity Modulated Proton Therapy: An Initial Clinical Experience.
Adv Radiat Oncol. 2023 Oct 21;9(3):101392. doi: 10.1016/j.adro.2023.101392. eCollection 2024 Mar.
7
Accelerating 4D image reconstruction for magnetic resonance-guided radiotherapy.
Phys Imaging Radiat Oncol. 2023 Aug 20;27:100484. doi: 10.1016/j.phro.2023.100484. eCollection 2023 Jul.
8
Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm.
Phys Imaging Radiat Oncol. 2023 Jun 24;27:100465. doi: 10.1016/j.phro.2023.100465. eCollection 2023 Jul.
9
FLASH instead of proton arc therapy is a more promising advancement for the next generation proton radiotherapy.
J Appl Clin Med Phys. 2023 Aug;24(8):e14091. doi: 10.1002/acm2.14091. Epub 2023 Jul 11.
10
Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy.
Front Oncol. 2023 Mar 2;13:1112481. doi: 10.3389/fonc.2023.1112481. eCollection 2023.

本文引用的文献

2
Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer.
Int J Radiat Oncol Biol Phys. 2013 Jun 1;86(2):380-6. doi: 10.1016/j.ijrobp.2013.01.024. Epub 2013 Feb 22.
3
4
Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: a 4D Monte Carlo treatment planning study.
Radiother Oncol. 2012 Aug;104(2):173-80. doi: 10.1016/j.radonc.2012.06.005. Epub 2012 Jul 28.
5
Range uncertainties in proton therapy and the role of Monte Carlo simulations.
Phys Med Biol. 2012 Jun 7;57(11):R99-117. doi: 10.1088/0031-9155/57/11/R99. Epub 2012 May 9.
6
Respiratory liver motion estimation and its effect on scanned proton beam therapy.
Phys Med Biol. 2012 Apr 7;57(7):1779-95. doi: 10.1088/0031-9155/57/7/1779. Epub 2012 Mar 9.
9
Motion in radiotherapy: particle therapy.
Phys Med Biol. 2011 Aug 21;56(16):R113-44. doi: 10.1088/0031-9155/56/16/R01. Epub 2011 Jul 20.
10
Toxicity and patterns of failure of adaptive/ablative proton therapy for early-stage, medically inoperable non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2011 Aug 1;80(5):1350-7. doi: 10.1016/j.ijrobp.2010.04.049. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验