Suppr超能文献

蛋白质-蛋白质相互作用界面热点小分子结合的计算研究

A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces.

作者信息

Xu David, Si Yubing, Meroueh Samy O

机构信息

Department of BioHealth Informatics, Indiana University School of Informatics and Computing , Indianapolis, Indiana 46202, United States.

出版信息

J Chem Inf Model. 2017 Sep 25;57(9):2250-2272. doi: 10.1021/acs.jcim.7b00181. Epub 2017 Aug 29.

Abstract

The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.

摘要

蛋白质 - 蛋白质相互作用的结合亲和力集中在被称为热点的氨基酸上。有人提出,小分子通过以下两种方式破坏蛋白质 - 蛋白质相互作用:(i)结合受体蛋白热点;(ii)模拟蛋白质配体的热点。然而,尚未进行系统研究来探索现有小分子蛋白质 - 蛋白质相互作用抑制剂在蛋白质界面模拟或结合热点的有效程度。在此,我们采用显式溶剂分子动力学模拟和终点MM - GBSA自由能计算来探讨这个问题。我们选择了36种具有高质量结合亲和力和共晶体结构的化合物。考虑了属于三类蛋白质 - 蛋白质相互作用(一级、二级和三级)的五个复合物,即BRD4•H4、XIAP•Smac、MDM2•p53、Bcl - xL•Bak和IL - 2•IL - 2Rα。使用MM - GBSA进行的计算丙氨酸扫描确定了这些蛋白质相互作用界面处的热点残基。分解能量比较了小分子与单个受体热点的相互作用以及与天然蛋白质配体的相互作用。药效团分析用于研究小分子模拟蛋白质配体热点位置的有效程度。最后,我们研究小分子是否模拟天然蛋白质配体对受体动力学的影响。我们的结果表明,一般来说,现有的蛋白质 - 蛋白质相互作用小分子抑制剂不能最佳地模拟蛋白质 - 配体热点,也不能有效地结合蛋白质受体热点。在未来的药物设计中更有效地利用热点可能会产生具有更高配体效率的更小化合物,这可能会在临床试验中取得更大成功。

相似文献

1
A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces.
J Chem Inf Model. 2017 Sep 25;57(9):2250-2272. doi: 10.1021/acs.jcim.7b00181. Epub 2017 Aug 29.
2
Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.
Biochemistry. 2017 Mar 28;56(12):1768-1784. doi: 10.1021/acs.biochem.6b01039. Epub 2017 Mar 17.
3
Protein-protein interface analysis and hot spots identification for chemical ligand design.
Curr Pharm Des. 2014;20(8):1192-200. doi: 10.2174/13816128113199990065.
5
Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.
J Mol Biol. 2008 Jun 13;379(4):787-802. doi: 10.1016/j.jmb.2008.04.035. Epub 2008 Apr 20.
8
A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors.
Bioorg Med Chem. 2015 Apr 15;23(8):1747-57. doi: 10.1016/j.bmc.2015.02.060. Epub 2015 Mar 6.

引用本文的文献

1
Identification of potent anti-immunogenic agents through virtual screening, 3D-QSAR studies, and in vitro experiments.
Mol Divers. 2024 Oct;28(5):2771-2782. doi: 10.1007/s11030-023-10709-4. Epub 2023 Aug 8.
2
Analysis of physicochemical properties of protein-protein interaction modulators suggests stronger alignment with the "rule of five".
RSC Med Chem. 2021 Jul 27;12(10):1731-1749. doi: 10.1039/d1md00213a. eCollection 2021 Oct 20.
3
Identifying protein-protein interface via a novel multi-scale local sequence and structural representation.
BMC Bioinformatics. 2019 Dec 24;20(Suppl 15):483. doi: 10.1186/s12859-019-3048-2.
5
Hot spot prediction in protein-protein interactions by an ensemble system.
BMC Syst Biol. 2018 Dec 31;12(Suppl 9):132. doi: 10.1186/s12918-018-0665-8.
6
Chemical Space Overlap with Critical Protein-Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries.
ChemMedChem. 2019 Jan 8;14(1):119-131. doi: 10.1002/cmdc.201800537. Epub 2018 Dec 20.

本文引用的文献

1
Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.
Biochemistry. 2017 Mar 28;56(12):1768-1784. doi: 10.1021/acs.biochem.6b01039. Epub 2017 Mar 17.
2
An Effective Virtual Screening Protocol To Identify Promising p53-MDM2 Inhibitors.
J Chem Inf Model. 2016 Jun 27;56(6):1216-27. doi: 10.1021/acs.jcim.5b00747. Epub 2016 Jun 7.
4
Re-engineering the Immune Response to Metastatic Cancer: Antibody-Recruiting Small Molecules Targeting the Urokinase Receptor.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3642-6. doi: 10.1002/anie.201510866. Epub 2016 Feb 16.
5
MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21. doi: 10.1021/ct300418h. Epub 2012 Aug 16.
6
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
7
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.
8
Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery.
Trends Pharmacol Sci. 2015 Nov;36(11):724-736. doi: 10.1016/j.tips.2015.08.003. Epub 2015 Nov 1.
9
Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2.
PLoS One. 2015 Apr 17;10(4):e0121424. doi: 10.1371/journal.pone.0121424. eCollection 2015.
10
The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.
Nat Protoc. 2015 May;10(5):733-55. doi: 10.1038/nprot.2015.043. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验