Suppr超能文献

通过集成系统预测蛋白质-蛋白质相互作用中的热点

Hot spot prediction in protein-protein interactions by an ensemble system.

作者信息

Liu Quanya, Chen Peng, Wang Bing, Zhang Jun, Li Jinyan

机构信息

Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.

School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China.

出版信息

BMC Syst Biol. 2018 Dec 31;12(Suppl 9):132. doi: 10.1186/s12918-018-0665-8.

Abstract

BACKGROUND

Hot spot residues are functional sites in protein interaction interfaces. The identification of hot spot residues is time-consuming and laborious using experimental methods. In order to address the issue, many computational methods have been developed to predict hot spot residues. Moreover, most prediction methods are based on structural features, sequence characteristics, and/or other protein features.

RESULTS

This paper proposed an ensemble learning method to predict hot spot residues that only uses sequence features and the relative accessible surface area of amino acid sequences. In this work, a novel feature selection technique was developed, an auto-correlation function combined with a sliding window technique was applied to obtain the characteristics of amino acid residues in protein sequence, and an ensemble classifier with SVM and KNN base classifiers was built to achieve the best classification performance.

CONCLUSION

The experimental results showed that our model yields the highest F1 score of 0.92 and an MCC value of 0.87 on ASEdb dataset. Compared with other machine learning methods, our model achieves a big improvement in hot spot prediction.

AVAILABILITY

http://deeplearner.ahu.edu.cn/web/HotspotEL.htm .

摘要

背景

热点残基是蛋白质相互作用界面中的功能位点。使用实验方法鉴定热点残基既耗时又费力。为了解决这个问题,已经开发了许多计算方法来预测热点残基。此外,大多数预测方法基于结构特征、序列特征和/或其他蛋白质特征。

结果

本文提出了一种仅使用序列特征和氨基酸序列的相对可及表面积来预测热点残基的集成学习方法。在这项工作中,开发了一种新颖的特征选择技术,应用自相关函数与滑动窗口技术相结合来获取蛋白质序列中氨基酸残基的特征,并构建了一个以支持向量机(SVM)和K近邻(KNN)为基础分类器的集成分类器,以实现最佳分类性能。

结论

实验结果表明,我们的模型在ASEdb数据集上的F1分数最高可达0.92,马修斯相关系数(MCC)值为0.87。与其他机器学习方法相比,我们的模型在热点预测方面有了很大改进。

可用性

http://deeplearner.ahu.edu.cn/web/HotspotEL.htm

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c7c/6311905/a4cd835f9e75/12918_2018_665_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验