Suppr超能文献

离子选择性和多层石墨烯纳米孔中碎片化脱水的过滤。

Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.

机构信息

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

出版信息

Nanoscale. 2017 Aug 17;9(32):11424-11428. doi: 10.1039/c7nr03838k.

Abstract

Selective ion transport is a hallmark of biological ion channel behavior but is a major challenge to engineer into artificial membranes. Here, we demonstrate, with all-atom molecular dynamics simulations, that bare graphene nanopores yield measurable ion selectivity that varies over one to two orders of magnitude simply by changing the pore radius and number of graphene layers. Monolayer graphene does not display dehydration-induced selectivity until the pore radius is small enough to exclude the first hydration layer from inside the pore. Bi- and tri-layer graphene, though, display such selectivity already for a pore size that barely encroaches on the first hydration layer, which is due to the more significant water loss from the second hydration layer. Measurement of selectivity and activation barriers from both first and second hydration layer barriers will help elucidate the behavior of biological ion channels. Moreover, the energy barriers responsible for selectivity - while small on the scale of hydration energies - are already relatively large, i.e., many kT. For separation of ions from water, therefore, one can exchange longer, larger radius pores for shorter, smaller radius pores, giving a practical method for maintaining exclusion efficiency while enhancing other properties (e.g., water throughput).

摘要

选择性离子传输是生物离子通道行为的标志,但将其工程应用于人工膜是一项重大挑战。在这里,我们通过全原子分子动力学模拟证明,裸露的石墨烯纳米孔具有可测量的离子选择性,仅通过改变孔径和石墨烯层数即可在一个到两个数量级范围内变化。单层石墨烯在孔径小到足以将孔内的第一层水合层排除在外之前,不会显示脱水诱导的选择性。然而,对于几乎不侵入第一层水合层的孔径,双和三层石墨烯就已经表现出这种选择性,这是由于第二层水合层的失水更为显著。测量来自第一层和第二层水合层势垒的选择性和激活势垒将有助于阐明生物离子通道的行为。此外,选择性的能量势垒——尽管在水合能的尺度上很小——已经相对较大,即许多 kT。因此,为了将离子从水中分离出来,可以用更长、更大半径的孔代替更短、更小半径的孔,从而在提高其他性能(例如,水通量)的同时保持排除效率。

相似文献

1
Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
Nanoscale. 2017 Aug 17;9(32):11424-11428. doi: 10.1039/c7nr03838k.
2
The importance of dehydration in determining ion transport in narrow pores.
Small. 2012 Jun 11;8(11):1701-9. doi: 10.1002/smll.201102056. Epub 2012 Mar 21.
3
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.
4
Quantifying barriers to monovalent anion transport in narrow non-polar pores.
Phys Chem Chem Phys. 2012 Sep 7;14(33):11633-8. doi: 10.1039/c2cp41641g. Epub 2012 Jul 23.
5
Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation.
ACS Nano. 2024 Feb 6;18(7):5571-80. doi: 10.1021/acsnano.3c11068.
6
Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores.
Entropy (Basel). 2020 Nov 20;22(11):1326. doi: 10.3390/e22111326.
7
Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
Nat Nanotechnol. 2015 Dec;10(12):1053-7. doi: 10.1038/nnano.2015.222. Epub 2015 Oct 5.
8
Molecular Dynamics Study of Mg/Li Separation via Biomimetic Graphene-Based Nanopores: The Role of Dehydration in Second Shell.
Langmuir. 2016 Dec 27;32(51):13778-13786. doi: 10.1021/acs.langmuir.6b03001. Epub 2016 Oct 25.
9
Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
Acc Mater Res. 2022 Oct 28;3(10):1073-1087. doi: 10.1021/accountsmr.2c00143. Epub 2022 Sep 13.
10
Multilayer Nanoporous Graphene as a Water Purification Membrane.
J Nanosci Nanotechnol. 2018 Aug 1;18(8):5799-5803. doi: 10.1166/jnn.2018.15467.

引用本文的文献

1
Role of Ion Dehydration in Ion-Ion Selectivity of Dense Membranes.
Environ Sci Technol. 2025 Sep 2;59(34):17997-18009. doi: 10.1021/acs.est.5c04303. Epub 2025 Aug 19.
2
Ion Selectivity, Current, and Water Flow Regulation in TiC MXene Nanopores.
Nano Lett. 2024 Aug 7;24(31):9487-9493. doi: 10.1021/acs.nanolett.4c01892. Epub 2024 Jul 1.
3
On the Choice of Different Water Model in Molecular Dynamics Simulations of Nanopore Transport Phenomena.
Membranes (Basel). 2022 Nov 7;12(11):1109. doi: 10.3390/membranes12111109.
4
Ion transport through a nanoporous CN membrane: the effect of electric field and layer number.
RSC Adv. 2018 Oct 30;8(64):36705-36711. doi: 10.1039/c8ra07795a. eCollection 2018 Oct 26.
5
Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores.
Entropy (Basel). 2020 Nov 20;22(11):1326. doi: 10.3390/e22111326.
6
Colloquium: Ionic phenomena in nanoscale pores through 2D materials.
Rev Mod Phys. 2019;91. doi: 10.1103/RevModPhys.91.021004.
7
Optimal transport and colossal ionic mechano-conductance in graphene crown ethers.
Sci Adv. 2019 Jul 12;5(7):eaaw5478. doi: 10.1126/sciadv.aaw5478. eCollection 2019 Jul.
8
Golden aspect ratio for ion transport simulation in nanopores.
Phys Rev E. 2018 Jul;98(1-1):012404. doi: 10.1103/PhysRevE.98.012404.
9
Maxwell-Hall access resistance in graphene nanopores.
Phys Chem Chem Phys. 2018 Feb 14;20(7):4646-4651. doi: 10.1039/c7cp07924a.
10
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.

本文引用的文献

1
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.
2
Tunable sieving of ions using graphene oxide membranes.
Nat Nanotechnol. 2017 Jul;12(6):546-550. doi: 10.1038/nnano.2017.21. Epub 2017 Apr 3.
3
Extrinsic Cation Selectivity of 2D Membranes.
ACS Nano. 2017 Feb 28;11(2):1340-1346. doi: 10.1021/acsnano.6b06034. Epub 2017 Feb 16.
4
Ion selectivity of graphene nanopores.
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
5
Observation of ionic Coulomb blockade in nanopores.
Nat Mater. 2016 Aug;15(8):850-5. doi: 10.1038/nmat4607. Epub 2016 Mar 28.
6
Multilayer Nanoporous Graphene Membranes for Water Desalination.
Nano Lett. 2016 Feb 10;16(2):1027-33. doi: 10.1021/acs.nanolett.5b04089. Epub 2016 Jan 25.
7
Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
Nat Nanotechnol. 2015 Dec;10(12):1053-7. doi: 10.1038/nnano.2015.222. Epub 2015 Oct 5.
9
DNA Translocation in Nanometer Thick Silicon Nanopores.
ACS Nano. 2015 Jun 23;9(6):6555-64. doi: 10.1021/acsnano.5b02531. Epub 2015 Jun 9.
10
Water desalination using nanoporous single-layer graphene.
Nat Nanotechnol. 2015 May;10(5):459-64. doi: 10.1038/nnano.2015.37. Epub 2015 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验