Center for Nanoscale Science and Technology, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.
Maryland Nanocenter, University of Maryland , College Park, Maryland 20742, United States.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.
Ion channels play a key role in regulating cell behavior and in electrical signaling. In these settings, polar and charged functional groups, as well as protein response, compensate for dehydration in an ion-dependent way, giving rise to the ion selective transport critical to the operation of cells. Dehydration, though, yields ion-dependent free-energy barriers and thus is predicted to give rise to selectivity by itself. However, these barriers are typically so large that they will suppress the ion currents to undetectable levels. Here, we establish that graphene displays a measurable dehydration-only mechanism for selectivity of K over Cl. This fundamental mechanism, one that depends only on the geometry and hydration, is the starting point for selectivity for all channels and pores. Moreover, while we study selectivity of K over Cl we find that dehydration-based selectivity functions for all ions, that is, cation over cation selectivity (e.g., K over Na). Its likely detection in graphene pores resolves conflicting experimental results, as well as presents a new paradigm for characterizing the operation of ion channels and engineering molecular/ionic selectivity in filtration and other applications.
离子通道在调节细胞行为和电信号方面起着关键作用。在这些情况下,极性和带电官能团以及蛋白质反应以离子依赖的方式补偿脱水,从而产生对细胞运行至关重要的离子选择性运输。然而,脱水会产生离子依赖性的自由能障碍,因此预计会自行产生选择性。但是,这些障碍通常非常大,以至于它们会将离子电流抑制到无法检测的水平。在这里,我们确定石墨烯显示出一种可测量的仅脱水机制,用于钾离子相对于氯离子的选择性。这种基本机制仅取决于几何形状和水合作用,是所有通道和孔选择性的起点。此外,虽然我们研究了钾离子相对于氯离子的选择性,但我们发现基于脱水的选择性适用于所有离子,即阳离子相对于阳离子的选择性(例如,钾离子相对于钠离子)。它可能在石墨烯孔中被检测到,解决了相互矛盾的实验结果,并为表征离子通道的工作以及在过滤和其他应用中设计分子/离子选择性提供了新的范例。