Suppr超能文献

脱水作为一种通用机制,用于调控石墨烯和其他原子级薄孔中的离子选择性。

Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.

机构信息

Center for Nanoscale Science and Technology, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.

Maryland Nanocenter, University of Maryland , College Park, Maryland 20742, United States.

出版信息

Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.

Abstract

Ion channels play a key role in regulating cell behavior and in electrical signaling. In these settings, polar and charged functional groups, as well as protein response, compensate for dehydration in an ion-dependent way, giving rise to the ion selective transport critical to the operation of cells. Dehydration, though, yields ion-dependent free-energy barriers and thus is predicted to give rise to selectivity by itself. However, these barriers are typically so large that they will suppress the ion currents to undetectable levels. Here, we establish that graphene displays a measurable dehydration-only mechanism for selectivity of K over Cl. This fundamental mechanism, one that depends only on the geometry and hydration, is the starting point for selectivity for all channels and pores. Moreover, while we study selectivity of K over Cl we find that dehydration-based selectivity functions for all ions, that is, cation over cation selectivity (e.g., K over Na). Its likely detection in graphene pores resolves conflicting experimental results, as well as presents a new paradigm for characterizing the operation of ion channels and engineering molecular/ionic selectivity in filtration and other applications.

摘要

离子通道在调节细胞行为和电信号方面起着关键作用。在这些情况下,极性和带电官能团以及蛋白质反应以离子依赖的方式补偿脱水,从而产生对细胞运行至关重要的离子选择性运输。然而,脱水会产生离子依赖性的自由能障碍,因此预计会自行产生选择性。但是,这些障碍通常非常大,以至于它们会将离子电流抑制到无法检测的水平。在这里,我们确定石墨烯显示出一种可测量的仅脱水机制,用于钾离子相对于氯离子的选择性。这种基本机制仅取决于几何形状和水合作用,是所有通道和孔选择性的起点。此外,虽然我们研究了钾离子相对于氯离子的选择性,但我们发现基于脱水的选择性适用于所有离子,即阳离子相对于阳离子的选择性(例如,钾离子相对于钠离子)。它可能在石墨烯孔中被检测到,解决了相互矛盾的实验结果,并为表征离子通道的工作以及在过滤和其他应用中设计分子/离子选择性提供了新的范例。

相似文献

1
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.
2
Dehydration-Determined Ion Selectivity of Graphene Subnanopores.
ACS Appl Mater Interfaces. 2020 May 27;12(21):24281-24288. doi: 10.1021/acsami.0c03932. Epub 2020 May 12.
3
Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
Nanoscale. 2017 Aug 17;9(32):11424-11428. doi: 10.1039/c7nr03838k.
4
Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores.
Entropy (Basel). 2020 Nov 20;22(11):1326. doi: 10.3390/e22111326.
5
Ozark Graphene Nanopore for Efficient Water Desalination.
J Phys Chem B. 2021 Oct 14;125(40):11256-11263. doi: 10.1021/acs.jpcb.1c06327. Epub 2021 Sep 30.
6
Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation.
ACS Nano. 2024 Feb 6;18(7):5571-80. doi: 10.1021/acsnano.3c11068.
7
The importance of dehydration in determining ion transport in narrow pores.
Small. 2012 Jun 11;8(11):1701-9. doi: 10.1002/smll.201102056. Epub 2012 Mar 21.
8
Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport.
ACS Nano. 2023 Jul 11;17(13):12629-12640. doi: 10.1021/acsnano.3c03028. Epub 2023 Jun 23.
9
Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
Nat Nanotechnol. 2015 Dec;10(12):1053-7. doi: 10.1038/nnano.2015.222. Epub 2015 Oct 5.
10
Voltage gated inter-cation selective ion channels from graphene nanopores.
Nanoscale. 2019 May 28;11(20):9856-9861. doi: 10.1039/c8nr10360g. Epub 2019 May 15.

引用本文的文献

1
Role of Ion Dehydration in Ion-Ion Selectivity of Dense Membranes.
Environ Sci Technol. 2025 Sep 2;59(34):17997-18009. doi: 10.1021/acs.est.5c04303. Epub 2025 Aug 19.
2
Highly selective removal of thallous ions from wastewater using Prussian Blue biochar composite.
Sci Rep. 2024 Sep 14;14(1):21479. doi: 10.1038/s41598-024-72245-x.
3
In situ generation of (sub) nanometer pores in MoS membranes for ion-selective transport.
Nat Commun. 2024 Sep 10;15(1):7911. doi: 10.1038/s41467-024-52109-8.
4
Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels.
Nat Commun. 2024 Aug 26;15(1):7329. doi: 10.1038/s41467-024-51877-7.
5
The Interplay of Solvation and Polarization Effects on Ion Pairing in Nanoconfined Electrolytes.
Nano Lett. 2024 Apr 9;24(16):5024-30. doi: 10.1021/acs.nanolett.4c00890.
6
Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2316716121. doi: 10.1073/pnas.2316716121. Epub 2024 Feb 13.
7
Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation.
ACS Nano. 2024 Feb 6;18(7):5571-80. doi: 10.1021/acsnano.3c11068.
8
Rational ion transport management mediated through membrane structures.
Exploration (Beijing). 2021 Oct 30;1(2):20210101. doi: 10.1002/EXP.20210101. eCollection 2021 Oct.
9
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
10
Ion transport through a nanoporous CN membrane: the effect of electric field and layer number.
RSC Adv. 2018 Oct 30;8(64):36705-36711. doi: 10.1039/c8ra07795a. eCollection 2018 Oct 26.

本文引用的文献

1
Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
Nanoscale. 2017 Aug 17;9(32):11424-11428. doi: 10.1039/c7nr03838k.
2
Ion selectivity of graphene nanopores.
Nat Commun. 2016 Apr 22;7:11408. doi: 10.1038/ncomms11408.
3
Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
Nat Nanotechnol. 2015 Dec;10(12):1053-7. doi: 10.1038/nnano.2015.222. Epub 2015 Oct 5.
4
Precise and ultrafast molecular sieving through graphene oxide membranes.
Science. 2014 Feb 14;343(6172):752-4. doi: 10.1126/science.1245711.
5
Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes.
Nano Lett. 2014 Mar 12;14(3):1234-41. doi: 10.1021/nl404118f. Epub 2014 Feb 13.
6
Quantifying barriers to monovalent anion transport in narrow non-polar pores.
Phys Chem Chem Phys. 2012 Sep 7;14(33):11633-8. doi: 10.1039/c2cp41641g. Epub 2012 Jul 23.
7
Assessing graphene nanopores for sequencing DNA.
Nano Lett. 2012 Aug 8;12(8):4117-23. doi: 10.1021/nl301655d. Epub 2012 Jul 17.
8
The importance of dehydration in determining ion transport in narrow pores.
Small. 2012 Jun 11;8(11):1701-9. doi: 10.1002/smll.201102056. Epub 2012 Mar 21.
9
Computational investigation of DNA detection using graphene nanopores.
ACS Nano. 2011 Nov 22;5(11):8842-51. doi: 10.1021/nn202989w. Epub 2011 Oct 13.
10
Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport.
J Gen Physiol. 2011 Jun;137(6):479-88. doi: 10.1085/jgp.201010579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验