Physical Chemistry I, Heinrich-Heine-University , 40225 Düsseldorf, Germany.
Physical Chemistry I, University of Bayreuth , 95440 Bayreuth, Germany.
Langmuir. 2018 Jan 23;34(3):854-867. doi: 10.1021/acs.langmuir.7b01595. Epub 2017 Aug 17.
Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core-shell particles, in particular, the development of new photonic materials from plasmonic nanocrystals.
周期性的等离子体纳米粒子超结构引起了人们的极大兴趣,因为它们可以支持耦合等离子体模式,这使得它们在等离子体激光、超材料以及薄膜光电设备中的光管理结构方面具有应用前景。我们最近表明,贵金属水凝胶核壳胶体允许制造高度有序的二维等离子体晶格,这些晶格由于等离子体/衍射耦合而显示表面晶格共振(Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. 自组装混合单层中表面晶格共振的可逆调谐可见波长表面晶格共振在自组装混合单层中。Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971)。在本工作中,我们研究了金水凝胶核壳胶体的三维晶体超结构及其无金核的多孔对应物的光子特性和结构。我们使用远场消光光谱研究了这些超结构的光学响应。无论是否存在金核,都测量到了窄布拉格峰。所有晶体都表现出低波长散射的显著减少。这导致了含有金纳米粒子的核壳胶体制备的样品的等离子体特性的显著增强。没有明显的等离子体/衍射耦合,这主要归因于金核的相对较小尺寸限制了有效耦合强度。小角中子散射被应用于研究晶体结构。对于所有的晶体样品,在很宽的体积分数范围内,都可以观察到几个有序的布拉格峰,这些布拉格峰可以明确地归因于粒子的面心立方排列。我们的结果表明,纳米晶核不会影响整体结晶行为或晶体结构。这些是基于核壳粒子构建光子材料的未来研究的重要前提,特别是开发新的基于等离子体纳米晶体的光子材料。