Wang Danqing, Guan Jun, Hu Jingtian, Bourgeois Marc R, Odom Teri W
Acc Chem Res. 2019 Nov 19;52(11):2997-3007. doi: 10.1021/acs.accounts.9b00345. Epub 2019 Oct 9.
Rationally assembled nanostructures exhibit distinct physical and chemical properties beyond their individual units. Developments in nanofabrication techniques have enabled the patterning of a wide range of nanomaterial designs over macroscale (>in.) areas. Periodic metal nanostructures show long-range diffractive interactions when the lattice spacing is close to the wavelength of the incident light. The collective coupling between metal nanoparticles in a lattice introduces sharp and intense plasmonic surface lattice resonances, in contrast to the broad localized resonances from single nanoparticles. Plasmonic nanoparticle lattices exhibit strongly enhanced optical fields within the subwavelength vicinity of the nanoparticle unit cells that are 2 orders of magnitude higher than that of individual units. These intense electromagnetic fields can manipulate nanoscale processes such as photocatalysis, optical spectroscopy, nonlinear optics, and light harvesting. This Account focuses on advances in exciton-plasmon coupling and light-matter interactions with plasmonic nanoparticle lattices. First, we introduce the fundamentals of ultrasharp surface lattice resonances; these resonances arise from the coupling of the localized surface plasmons of a nanoparticle to the diffraction mode from the lattice. Second, we discuss how integrating dye molecules with plasmonic nanoparticle lattices can result in an architecture for nanoscale lasing at room temperature. The lasing emission wavelength can be tuned in real time by adjusting the refractive index environment or varying the lattice spacing. Third, we describe how manipulating either the shape of the unit cell or the lattice geometry can control the lasing emission properties. Low-symmetry plasmonic nanoparticle lattices can show polarization-dependent lasing responses, and multiscale plasmonic superlattices-finite patches of nanoparticles grouped into microscale arrays-can support multiple plasmon resonances for controlled multimodal nanolasing. Fourth, we discuss how the assembly of photoactive emitters on the nanocavity arrays behaves as a hybrid materials system with enhanced exciton-plasmon coupling. Positioning metal-organic framework materials around nanoparticles produces mixed photon modes with strongly enhanced photoluminescence at wavelengths determined by the lattice. Deterministic coupling of quantum emitters in two-dimensional materials to plasmonic lattices leads to preserved single-photon emission and reduced decay lifetimes. Finally, we highlight emerging applications of nanoparticle lattices from compact, fully reconfigurable imaging devices to solid-state emitter structures. Plasmonic nanoparticle lattices are a versatile, scalable platform for tunable flat optics, nontrivial topological photonics, and modified chemical reactivities.
合理组装的纳米结构展现出超越其单个单元的独特物理和化学性质。纳米制造技术的发展使得在宏观尺度(>英寸)区域上对多种纳米材料设计进行图案化成为可能。当晶格间距接近入射光波长时,周期性金属纳米结构会表现出长程衍射相互作用。与单个纳米颗粒产生的宽泛局域共振相比,晶格中金属纳米颗粒之间的集体耦合会引入尖锐且强烈的等离子体表面晶格共振。等离子体纳米颗粒晶格在纳米颗粒晶胞的亚波长范围内展现出强烈增强的光场,比单个单元的光场高2个数量级。这些强烈的电磁场能够操控诸如光催化、光谱学、非线性光学和光捕获等纳米级过程。本综述聚焦于激子 - 等离子体耦合以及与等离子体纳米颗粒晶格的光 - 物质相互作用方面的进展。首先,我们介绍超尖锐表面晶格共振的基本原理;这些共振源于纳米颗粒的局域表面等离子体与晶格衍射模式的耦合。其次,我们讨论将染料分子与等离子体纳米颗粒晶格集成如何能够形成一种在室温下实现纳米级激光发射的结构。通过调节折射率环境或改变晶格间距,可以实时调谐激光发射波长。第三,我们描述如何通过操控晶胞形状或晶格几何结构来控制激光发射特性。低对称性等离子体纳米颗粒晶格能够表现出偏振依赖的激光发射响应,而多尺度等离子体超晶格(纳米颗粒的有限斑块组成微尺度阵列)可以支持多个等离子体共振以实现可控的多模纳米激光发射。第四,我们讨论光活性发射体在纳米腔阵列上的组装如何作为一种具有增强激子 - 等离子体耦合的混合材料系统。在纳米颗粒周围定位金属 - 有机框架材料会产生混合光子模式,在由晶格决定的波长处具有强烈增强的光致发光。二维材料中的量子发射体与等离子体晶格的确定性耦合导致单光子发射得以保留且衰减寿命缩短。最后,我们强调纳米颗粒晶格从紧凑、完全可重构成像设备到固态发射体结构等新兴应用。等离子体纳米颗粒晶格是用于可调谐平面光学、非平凡拓扑光子学和改性化学反应性的通用、可扩展平台。