Quiles Justin M, Narasimhan Madhusudhanan, Mosbruger Timothy, Shanmugam Gobinath, Crossman David, Rajasekaran Namakkal S
Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
Redox Biol. 2017 Oct;13:568-580. doi: 10.1016/j.redox.2017.07.013. Epub 2017 Jul 24.
The nuclear factor erythroid 2 like 2 (Nfe2l2/Nrf2) is a master regulator of antioxidant gene transcription. We recently identified that constitutive activation of Nrf2 (CaNrf2) caused reductive stress (RS) in the myocardium. Here we investigate how chronic Nrf2 activation alters myocardial mRNA transcriptome in the hearts of CaNrf2 transgenic (TG-low and TG-high) mice using an unbiased integrated systems approach and next generation RNA sequencing followed by qRT-PCR methods. A total of 246 and 1031 differentially expressed genes (DEGs) were identified in the heart of TGL and TGH in relation to NTG littermates at ~ 6 months of age. Notably, the expression and validation of the transcripts were gene-dosage dependent and statistically significant. Ingenuity Pathway Analysis identified enriched biological processes and canonical pathways associated with myocardial RS in the CaNrf2-TG mice. In addition, an overrepresentation of xenobiotic metabolic signaling, glutathione-mediated detoxification, unfolded protein response, and protein ubiquitination was observed. Other, non-canonical signaling pathways identified include: eNOS, integrin-linked kinase, glucocorticoid receptor, PI3/AKT, actin cytoskeleton, cardiac hypertrophy, and the endoplasmic reticulum stress response. In conclusion, this mRNA profiling identified a "biosignature" for pro-reductive (TGL) and reductive stress (TGH) that can predict the onset, rate of progression, and clinical outcome of Nrf2-dependent myocardial complications. We anticipate that this global sequencing analysis will illuminate the undesirable effect of chronic Nrf2 signaling leading to RS-mediated pathogenesis besides providing important guidance for the application of Nrf2 activation-based cytoprotective strategies.
核因子红细胞2样2(Nfe2l2/Nrf2)是抗氧化基因转录的主要调节因子。我们最近发现,Nrf2的组成性激活(CaNrf2)会导致心肌中的还原应激(RS)。在此,我们使用无偏整合系统方法和下一代RNA测序以及qRT-PCR方法,研究慢性Nrf2激活如何改变CaNrf2转基因(TG-low和TG-high)小鼠心脏中的心肌mRNA转录组。在约6个月大时,与NTG同窝小鼠相比,在TGL和TGH小鼠的心脏中分别鉴定出246个和1031个差异表达基因(DEG)。值得注意的是,转录本的表达和验证具有基因剂量依赖性且具有统计学意义。 Ingenuity通路分析确定了与CaNrf2-TG小鼠心肌RS相关的丰富生物学过程和经典通路。此外,还观察到外源性代谢信号、谷胱甘肽介导的解毒、未折叠蛋白反应和蛋白质泛素化的过度表达。鉴定出的其他非经典信号通路包括:eNOS、整合素连接激酶、糖皮质激素受体、PI3/AKT、肌动蛋白细胞骨架、心脏肥大和内质网应激反应。总之,这种mRNA谱分析确定了促还原(TGL)和还原应激(TGH)的“生物特征”,可预测Nrf2依赖性心肌并发症的发作、进展速度和临床结果。我们预计,这种全局测序分析除了为基于Nrf2激活的细胞保护策略的应用提供重要指导外,还将阐明慢性Nrf2信号传导导致RS介导的发病机制的不良影响。