Bioinformatics Training Program, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6.
Genome Res. 2017 Sep;27(9):1573-1588. doi: 10.1101/gr.221218.117. Epub 2017 Jul 18.
Prioritizing molecular alterations that act as drivers of cancer remains a crucial bottleneck in therapeutic development. Here we introduce HIT'nDRIVE, a computational method that integrates genomic and transcriptomic data to identify a set of patient-specific, sequence-altered genes, with sufficient collective influence over dysregulated transcripts. HIT'nDRIVE aims to solve the "random walk facility location" (RWFL) problem in a gene (or protein) interaction network, which differs from the standard facility location problem by its use of an alternative distance measure: "multihitting time," the expected length of the shortest random walk from any one of the set of sequence-altered genes to an expression-altered target gene. When applied to 2200 tumors from four major cancer types, HIT'nDRIVE revealed many potentially clinically actionable driver genes. We also demonstrated that it is possible to perform accurate phenotype prediction for tumor samples by only using HIT'nDRIVE-seeded driver gene modules from gene interaction networks. In addition, we identified a number of breast cancer subtype-specific driver modules that are associated with patients' survival outcome. Furthermore, HIT'nDRIVE, when applied to a large panel of pan-cancer cell lines, accurately predicted drug efficacy using the driver genes and their seeded gene modules. Overall, HIT'nDRIVE may help clinicians contextualize massive multiomics data in therapeutic decision making, enabling widespread implementation of precision oncology.
在治疗开发中,优先考虑作为癌症驱动因素的分子改变仍然是一个关键的瓶颈。在这里,我们介绍了 HIT'nDRIVE,这是一种计算方法,它整合了基因组和转录组数据,以识别一组具有足够集体影响力的患者特异性、序列改变的基因,这些基因对失调的转录物有影响。HIT'nDRIVE 旨在解决基因(或蛋白质)相互作用网络中的“随机游走设施定位”(RWFL)问题,与标准设施定位问题的不同之处在于它使用了替代的距离度量标准:“多击时间”,即从一组序列改变的基因到表达改变的目标基因的最短随机游走的预期长度。当应用于来自四大癌症类型的 2200 个肿瘤时,HIT'nDRIVE 揭示了许多潜在的临床可操作的驱动基因。我们还证明,仅使用从基因相互作用网络中播种的驱动基因模块,就可以对肿瘤样本进行准确的表型预测。此外,我们还确定了一些与患者生存结果相关的乳腺癌亚型特异性驱动模块。此外,HIT'nDRIVE 在应用于大量泛癌细胞系时,使用驱动基因及其播种的基因模块准确地预测了药物疗效。总的来说,HIT'nDRIVE 可能有助于临床医生在治疗决策中对大量多组学数据进行背景化处理,从而实现精准肿瘤学的广泛应用。