Suppr超能文献

运动单位的灵活神经控制。

Flexible neural control of motor units.

机构信息

Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.

Zuckerman Institute, Columbia University, New York, NY, USA.

出版信息

Nat Neurosci. 2022 Nov;25(11):1492-1504. doi: 10.1038/s41593-022-01165-8. Epub 2022 Oct 10.

Abstract

Voluntary movement requires communication from cortex to the spinal cord, where a dedicated pool of motor units (MUs) activates each muscle. The canonical description of MU function rests upon two foundational tenets. First, cortex cannot control MUs independently but supplies each pool with a common drive. Second, MUs are recruited in a rigid fashion that largely accords with Henneman's size principle. Although this paradigm has considerable empirical support, a direct test requires simultaneous observations of many MUs across diverse force profiles. In this study, we developed an isometric task that allowed stable MU recordings, in a rhesus macaque, even during rapidly changing forces. Patterns of MU activity were surprisingly behavior-dependent and could be accurately described only by assuming multiple drives. Consistent with flexible descending control, microstimulation of neighboring cortical sites recruited different MUs. Furthermore, the cortical population response displayed sufficient degrees of freedom to potentially exert fine-grained control. Thus, MU activity is flexibly controlled to meet task demands, and cortex may contribute to this ability.

摘要

自愿运动需要从大脑皮层到脊髓的通讯,在脊髓中,专门的运动单位 (MU) 池激活每块肌肉。MU 功能的典型描述基于两个基本原理。首先,大脑皮层不能独立控制 MU,而是为每个池提供共同的驱动力。其次,MU 以刚性的方式募集,这在很大程度上符合亨纳曼的大小原则。尽管这一范式具有相当多的经验支持,但直接测试需要在多种力曲线下同时观察许多 MU。在这项研究中,我们开发了一种等长任务,即使在力迅速变化的情况下,也允许在恒河猴中稳定地记录 MU。MU 活动的模式出人意料地依赖于行为,并且只能通过假设多个驱动力来准确描述。与灵活的下行控制一致,相邻皮质部位的微刺激募集了不同的 MU。此外,皮质群体反应显示出足够的自由度,可以潜在地进行精细控制。因此,MU 活动是灵活控制以满足任务需求的,并且大脑皮层可能对此有贡献。

相似文献

1
Flexible neural control of motor units.运动单位的灵活神经控制。
Nat Neurosci. 2022 Nov;25(11):1492-1504. doi: 10.1038/s41593-022-01165-8. Epub 2022 Oct 10.

引用本文的文献

1
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
3
Diaphragm Muscle: A Pump That Can Not Fail.膈肌:一个不会失灵的泵。
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
4
Neural trajectories improve motor precision.神经轨迹可提高运动精度。
bioRxiv. 2025 Jul 3:2025.07.01.662682. doi: 10.1101/2025.07.01.662682.

本文引用的文献

3
Nonlinear Input-Output Functions of Motoneurons.运动神经元的非线性输入-输出函数。
Physiology (Bethesda). 2020 Jan 1;35(1):31-39. doi: 10.1152/physiol.00026.2019.
4
High-dimensional geometry of population responses in visual cortex.群体视觉皮层反应的高维几何结构。
Nature. 2019 Jul;571(7765):361-365. doi: 10.1038/s41586-019-1346-5. Epub 2019 Jun 26.
7
A Fully Automated Approach to Spike Sorting.一种用于尖峰排序的全自动方法。
Neuron. 2017 Sep 13;95(6):1381-1394.e6. doi: 10.1016/j.neuron.2017.08.030.
9
Neural Manifolds for the Control of Movement.用于运动控制的神经流形
Neuron. 2017 Jun 7;94(5):978-984. doi: 10.1016/j.neuron.2017.05.025.
10
Representation of Muscle Synergies in the Primate Brain.灵长类大脑中肌肉协同作用的表现
J Neurosci. 2015 Sep 16;35(37):12615-24. doi: 10.1523/JNEUROSCI.4302-14.2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验