Suppr超能文献

氧和容量限制的热耐受性:连接生态学与生理学

Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology.

作者信息

Pörtner Hans-O, Bock Christian, Mark Felix C

机构信息

Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany

Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany.

出版信息

J Exp Biol. 2017 Aug 1;220(Pt 15):2685-2696. doi: 10.1242/jeb.134585.

Abstract

Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting 'total excess aerobic power budget' supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes - mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.

摘要

对气候影响生态系统的观察结果凸显了了解生物体温范围及其在生态系统层面影响的必要性。在已观察到水生动物种群变化的地方,氧和容量受限热耐受性(OCLTT)这一综合概念已成功地描述了性能和野外丰度热限的起始情况。OCLTT概念涉及从分子到整个动物的机制,这些机制定义了与氧气需求相关的生物氧气供应能力的热限制。由此产生的“总过量有氧功率预算”支持动物在个体体温范围内的性能(例如包括运动活动、繁殖和生长)。有氧功率预算通常通过测量活动的有氧范围(即静息时与最高运动诱导耗氧率之间的最大差值)来近似估算,而野外的大多数动物依赖较低(即常规)的活动模式。在热限条件下,OCLTT还整合了保护机制,这些机制可将对极端温度的限时耐受性延长——诸如分子伴侣、无氧代谢和抗氧化防御等机制。在此,我们简要总结OCLTT概念,并通过阐述常规代谢的作用对其进行更新。我们强调应用该概念时可能存在的陷阱,并讨论导致OCLTT发展的测量变量。我们提出,OCLTT解释了为何热脆弱性在整个动物层面最高而在分子层面最低。我们还讨论了OCLTT如何捕捉对水生动物生命进化的热限制,并有助于理解从水生向陆生转变的益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验