Hiraiwa Tetsuya, Kuranaga Erina, Shibata Tatsuo
Department of Physics, Graduate School of Science, University of TokyoTokyo, Japan.
Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan.
Front Cell Dev Biol. 2017 Jul 19;5:66. doi: 10.3389/fcell.2017.00066. eCollection 2017.
During animal development, epithelial cells forming a monolayer sheet move collectively to achieve the morphogenesis of epithelial tissues. One driving mechanism of such collective cell movement is junctional remodeling, which is found in the process of clockwise rotation of male terminalia during metamorphosis. However, it still remains unknown how the motions of cells are spatiotemporally organized for collective movement by this mechanism. Since these moving cells undergo elastic deformations, the influence of junctional remodeling may mechanically propagate among them, leading to spatiotemporal pattern formations. Here, using a numerical cellular vertex model, we found that the junctional remodeling in collective cell movement exhibits spatiotemporal self-organization without requiring spatial patterns of molecular signaling activity. The junctional remodeling propagates as a wave in a specific direction with a much faster speed than that of cell movement. Such propagation occurs in both the absence and presence of fluctuations in the contraction of cell boundaries.
在动物发育过程中,形成单层薄片的上皮细胞会集体移动,以实现上皮组织的形态发生。这种集体细胞运动的一个驱动机制是连接重塑,这在变态过程中雄性外生殖器的顺时针旋转过程中被发现。然而,目前仍不清楚通过这种机制,细胞的运动是如何在时空上组织起来以进行集体运动的。由于这些移动的细胞会发生弹性变形,连接重塑的影响可能会在它们之间机械地传播,从而导致时空模式的形成。在这里,我们使用一个数值细胞顶点模型发现,集体细胞运动中的连接重塑表现出时空自组织,而不需要分子信号活动的空间模式。连接重塑以波的形式在特定方向上传播,其速度比细胞运动的速度快得多。这种传播在细胞边界收缩存在波动和不存在波动的情况下都会发生。