文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

硅 tether 策略在 C-H 功能化反应中的应用。

Silicon-Tethered Strategies for C-H Functionalization Reactions.

机构信息

Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States.

出版信息

Acc Chem Res. 2017 Aug 15;50(8):2038-2053. doi: 10.1021/acs.accounts.7b00306. Epub 2017 Aug 3.


DOI:10.1021/acs.accounts.7b00306
PMID:28771325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5724575/
Abstract

Selective and efficient functionalization of ubiquitous C-H bonds is the Holy Grail of organic synthesis. Most advances in this area rely on employment of strongly or weakly coordinating directing groups (DGs) which have proven effective for transition-metal-catalyzed functionalization of C(sp)-H and C(sp)-H bonds. Although most directing groups are important functionalities in their own right, in certain cases, the DGs become static entities that possess very little synthetic leverage. Moreover, some of the DGs employed are cumbersome or unpractical to remove, which precludes the use of this approach in synthesis. It is believed, that development of a set of easily installable and removable/modifiable DGs for C-H functionalization would add tremendous value to the growing area of directed functionalization, and hence would promote its use in synthesis and late-stage functionalization of complex molecules. In particular, silicon tethers have long provided leverage in organic synthesis as easily installable and removable/modifiable auxiliaries for a variety of processes, including radical transformations, cycloaddition reactions, and a number of TM-catalyzed methods, including ring-closing metathesis (RCM) and cross-coupling reactions. Employment of Si-tethers is highly attractive for several reasons: (1) they are easy to handle/synthesize and are relatively stable; (2) they utilize cheap and abundant silicon precursors; and (3) Si-tethers are easily installable and removable/modifiable. Hence, development of Si-tethers for C-H functionalization reactions is appealing not only from a practical but also from a synthetic standpoint, since the Si-tether can provide an additional handle for diversification of organic molecules post-C-H functionalization. Over the past few years, we developed a set of Si-tether approaches for C-H functionalization reactions. The developed Si-tethers can be categorized into four types: (Type-1) Si-tethers possessing a reacting group, where the reacting group is delivered to the site of functionalization; (Type-2) Si-tethers possessing a DG, designed for selective C(sp)-H functionalization of arenes; (Type-3) reactive Si-tethers for C-H silylation of organic molecules; and finally, (Type-4) reactive Si-tethers containing a DG, developed for selective C-H silylation/hydroxylation of challenging C(sp)-H bonds. In this Account, we outline our advances on the employment of silicon auxiliaries for directed C-H functionalization reactions. The discussion of the strategies for employment of different Si-tethers, functionalization/modification of silicon tethers, and the methodological developments on C-C, C-X, C-O, and C-Si bond forming reactions via silicon tethers will also be presented. While the work described herein presents a substantial advance for the area of C-H functionalization, challenges still remain. The use of noble metals are required for the C-H functionalization methods presented herein. Also, the need for stoichiometric use of high molecular weight silicon auxiliaries is a shortcoming of the presented concept.

摘要

选择性和高效的 C-H 键功能化是有机合成的圣杯。该领域的大多数进展都依赖于使用强或弱配位导向基团(DG),这些基团已被证明可有效用于过渡金属催化的 C(sp)-H 和 C(sp)-H 键功能化。尽管大多数导向基团本身就是重要的官能团,但在某些情况下,DG 成为具有很少合成杠杆作用的静态实体。此外,所使用的一些 DG 体积庞大或不实用,难以去除,这排除了该方法在合成中的应用。人们相信,开发一套易于安装和可去除/可修改的用于 C-H 功能化的 DG 将为不断发展的导向功能化领域增添巨大价值,并因此促进其在复杂分子的合成和后期功能化中的应用。特别是,硅键合基团作为各种过程(包括自由基转化、环加成反应和许多 TM 催化方法,包括环封闭复分解(RCM)和交叉偶联反应)中易于安装和可去除/可修改的辅助剂,作为有机合成中的杠杆已有很长时间了。硅键合基团的使用具有以下几个吸引人的原因:(1)它们易于处理/合成且相对稳定;(2)它们利用廉价且丰富的硅前体;(3)硅键合基团易于安装和可去除/可修改。因此,从实用和合成的角度来看,开发用于 C-H 功能化反应的硅键合基团不仅具有吸引力,因为硅键合基团可以为 C-H 功能化后有机分子的多样化提供额外的处理方式。在过去的几年中,我们开发了一套用于 C-H 功能化反应的硅键合基团方法。所开发的硅键合基团可以分为四类:(类型 1)具有反应基团的硅键合基团,其中反应基团被输送到功能化位点;(类型 2)具有 DG 的硅键合基团,设计用于芳环的选择性 C(sp)-H 功能化;(类型 3)用于有机分子 C-H 硅烷化的反应性硅键合基团;最后,(类型 4)含有 DG 的反应性硅键合基团,用于选择性 C-H 硅烷化/羟基化挑战性 C(sp)-H 键。在本报告中,我们概述了我们在使用硅助剂进行导向 C-H 功能化反应方面的进展。还将讨论使用不同硅键合基团的策略、硅键合基团的功能化/修饰以及通过硅键合基团形成 C-C、C-X、C-O 和 C-Si 键的方法学发展。虽然本文所述的工作代表了 C-H 功能化领域的重大进展,但挑战仍然存在。本文所述的 C-H 功能化方法需要使用贵金属。此外,所提出的概念的缺点是需要使用化学计量的高分子量硅助剂。

相似文献

[1]
Silicon-Tethered Strategies for C-H Functionalization Reactions.

Acc Chem Res. 2017-8-3

[2]
Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.

Acc Chem Res. 2015-4-21

[3]
Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes.

Acc Chem Res. 2015-4-6

[4]
Emergence of Pyrimidine-Based -Directing Group: Journey from Weak to Strong Coordination in Diversifying -C-H Functionalization.

Acc Chem Res. 2022-2-1

[5]
Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization.

Acc Chem Res. 2016-3-25

[6]
Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.

Acc Chem Res. 2012-10-26

[7]
Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst.

Nature. 2015-2-5

[8]
Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.

Acc Chem Res. 2018-10-16

[9]
Catalytic Reductive ortho-C-H Silylation of Phenols with Traceless, Versatile Acetal Directing Groups and Synthetic Applications of Dioxasilines.

J Am Chem Soc. 2016-6-16

[10]
Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization.

Acc Chem Res. 2017-1-25

引用本文的文献

[1]
Multifunctional chiral silanol ligands for enantioselective catalysis.

Chem Sci. 2025-6-13

[2]
Site-Selective C─H Bond Functionalization of Sugars.

Angew Chem Int Ed Engl. 2025-5

[3]
Illuminating Palladium Catalysis.

Acc Chem Res. 2025-3-18

[4]
Covalent Template-Directed Synthesis: A Powerful Tool for the Construction of Complex Molecules.

Chem Rev. 2025-2-12

[5]
Biomimetic Catalytic Remote Desaturation of Aliphatic Alcohols.

Org Lett. 2025-1-10

[6]
Large Scale Epoxide Opening by a Pendant Silanol.

Organic Synth. 2023

[7]
Highly scalable photoinduced synthesis of silanols via untraversed pathway for chlorine radical (Cl) generation.

Nat Commun. 2023-12-9

[8]
Iridium-Catalyzed, Site-Selective Silylation of Secondary C(sp)-H Bonds in Secondary Alcohols and Ketones.

J Am Chem Soc. 2023-9-13

[9]
Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen.

Nat Commun. 2023-7-28

[10]
Chemodivergent assembly of ortho-functionalized phenols with tunable selectivity via rhodium(III)-catalyzed and solvent-controlled C-H activation.

Commun Chem. 2021-6-3

本文引用的文献

[1]
Palladium-Catalyzed Transformations of Alkyl C-H Bonds.

Chem Rev. 2017-7-12

[2]
Ring Construction by Palladium(0)-Catalyzed C(sp)-H Activation.

Acc Chem Res. 2017-4-4

[3]
Remote site-selective C-H activation directed by a catalytic bifunctional template.

Nature. 2017-3-23

[4]
Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

Angew Chem Int Ed Engl. 2017-2-17

[5]
Synthesis of meta-Terphenyl-2,2''-diols by Anodic C-C Cross-Coupling Reactions.

Angew Chem Int Ed Engl. 2016-8-4

[6]
Pd-Catalyzed C-H Alkylation of Arenes Using PyrDipSi, a Transformable and Removable Silicon-Tethered Directing Group.

Chemistry. 2016-8-1

[7]
Palladium-Catalyzed Directed para C-H Functionalization of Phenols.

Angew Chem Int Ed Engl. 2016-5-9

[8]
Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers.

J Am Chem Soc. 2016-5-25

[9]
Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.

Acc Chem Res. 2015-4-21

[10]
Catalytic Silylation of Unactivated C-H Bonds.

Chem Rev. 2015-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索