Hofmann Sonja, Hess Stephanie, Klein Carsten, Lindena Gabriele, Radbruch Lukas, Ostgathe Christoph
Department of Palliative Medicine, Universitätsklinikum Erlangen, CCC Erlangen-EMN, Friedrich- Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Department of Anaesthesiology, Universitätsklinikum Erlangen, CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
PLoS One. 2017 Aug 3;12(8):e0179415. doi: 10.1371/journal.pone.0179415. eCollection 2017.
Anxiety is one of the most common psychological symptoms in patients in a palliative care situation. This study aims to develop a predictive model for anxiety using data from the standard documentation routine.
Data sets of palliative care patients collected by the German quality management benchmarking system called Hospice and Palliative Care Evaluation (HOPE) from 2007 to 2011 were randomly divided into a training set containing two-thirds of the data and a test set with the remaining one-third. We dichotomized anxiety levels, proxy rated by medical staff using the validated HOPE Symptom and Problem Checklist, into two groups with no or mild anxiety versus moderate or severe anxiety. Using the training set, a multivariable logistic regression model was developed by backward stepwise selection. Predictive accuracy was evaluated by the area under the receiver operating characteristic curve (AUC) based on the test set.
An analysis of 9924 data sets suggests a predictive model for anxiety in patients receiving palliative care which contains gender, age, ECOG, living situation, pain, nausea, dyspnea, loss of appetite, tiredness, need for assistance with activities of daily living, problems with organization of care, medication with sedatives/anxiolytics, antidepressants, antihypertensive drugs, laxatives, and antibiotics. It results in a fair predictive value (AUC = 0.72).
Routinely collected data providing individual-, disease- and therapy-related information contain valuable information that is useful for the prediction of anxiety risks in patients receiving palliative care. These findings could thus be advantageous for providing appropriate support for patients in palliative care settings and should receive special attention in future research.
焦虑是姑息治疗患者中最常见的心理症状之一。本研究旨在利用标准文档常规中的数据开发一种焦虑预测模型。
由德国质量管理基准系统“临终关怀与姑息治疗评估(HOPE)”在2007年至2011年收集的姑息治疗患者数据集被随机分为一个包含三分之二数据的训练集和一个包含其余三分之一数据的测试集。我们将焦虑水平(由医务人员使用经过验证的HOPE症状和问题清单进行代理评分)分为两组,即无焦虑或轻度焦虑组与中度或重度焦虑组。利用训练集,通过向后逐步选择建立了一个多变量逻辑回归模型。基于测试集,通过受试者工作特征曲线下面积(AUC)评估预测准确性。
对999个数据集的分析表明,针对接受姑息治疗患者的焦虑预测模型包含性别、年龄、东部肿瘤协作组(ECOG)体能状态、生活状况、疼痛、恶心、呼吸困难、食欲不振、疲劳、日常生活活动需要协助、护理组织问题、使用镇静剂/抗焦虑药、抗抑郁药、降压药、泻药和抗生素的情况。其预测价值尚可(AUC = 0.72)。
常规收集的提供个体、疾病和治疗相关信息的数据包含有价值的信息,有助于预测接受姑息治疗患者的焦虑风险。因此,这些发现可能有利于为姑息治疗环境中的患者提供适当支持,并应在未来研究中受到特别关注。