Suppr超能文献

通过思维语言中的概率程序归纳学习抽象视觉概念。

Learning abstract visual concepts via probabilistic program induction in a Language of Thought.

机构信息

Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, United States.

出版信息

Cognition. 2017 Nov;168:320-334. doi: 10.1016/j.cognition.2017.07.005. Epub 2017 Aug 1.

Abstract

The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization.

摘要

学习抽象概念的能力是人类认知的一个强大组成部分。有人认为,变量绑定是使这种能力成为可能的关键要素,但变量绑定的计算方面仍未得到很好的理解。在这里,我们通过形式化规则学习的层次语言思维 (HLOT) 模型来解决这个缺点。给定一组数据项,该模型使用贝叶斯推理来推断实现变量绑定的随机程序的概率分布。由于该模型既使用符号变量,又使用贝叶斯推理和具有随机基元的程序,因此它结合了符号和统计方法在认知建模方面的许多优势。为了评估该模型,我们进行了一项实验,其中人类受试者观看了训练项目,然后判断哪些测试项目与训练项目属于同一概念。我们发现,HLOT 模型与人类的概括模式非常匹配,明显优于两种广义上下文模型变体,一种基于字符串相似性,另一种基于使用深度卷积神经网络特征的视觉相似性。其他结果表明,变量绑定是自动发生的,这意味着绑定操作不会给人们假设的规则增加复杂性。总的来说,这项工作表明,将符号变量与贝叶斯推理和随机程序基元相结合的认知模型为理解人们的概括模式提供了一个新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验