Yildirim Nadir, Shaler Stephen
Forest Industry Engineering, Bursa Technical University, Bursa 16310, Turkey.
School of Forest Resources, University of Maine, Orono, ME 04469-5755, USA.
Materials (Basel). 2017 Jun 28;10(7):718. doi: 10.3390/ma10070718.
Wood-based cellulose nanomaterials (CNs) (specifically, cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs)) are environmentally sourced low-impact materials with remarkable thermal, mechanical, and physical properties. This uniqueness makes them great candidates for creating nanocomposite materials with a wide range of attributes. Investigating the morphological, thermal, and nanomechanical properties of CNs becomes crucial to intelligent development of novel composite materials. An atomic force microscope equipped with a nanoindenter was used to investigate the compression modulus of CNFs and CNCs using two analytical approaches (denoted as Oliver Pharr (OP) and Fused Silica (FS)). The CNC modulus values (E = 21.1 GPa, E = 28.7 GPa) were statistically larger than those obtained from CNFs (E = 12.4 GPa, E = 15.1 GPa). Additionally, the FS analytical approach provided statistically significant lower estimates. Thermal stability of CNFs and CNCs was investigated using thermogravimetric analysis. Significant differences were found between CNF and CNC onset temperatures (Onset = 228.2 °C, Onset = 279.9 °C), decomposition temperatures (DTGA = 247.9 °C, DTGA = 331.4 °C), and residues (Residue = 34.4%, Residue = 22.8%). This research enriches the information on thermal stability and nanomechanical performance of cellulose nanomaterials, and provides increased knowledge on understanding the effect of CNs as a matrix or reinforce in composites.
木质纤维素纳米材料(CNs)(具体来说,纤维素纳米纤维(CNFs)和纤维素纳米晶体(CNCs))是源自环境的低影响材料,具有卓越的热性能、机械性能和物理性能。这种独特性使其成为制造具有广泛特性的纳米复合材料的理想选择。研究CNs的形态、热性能和纳米力学性能对于新型复合材料的智能开发至关重要。使用配备纳米压痕仪的原子力显微镜,采用两种分析方法(分别表示为奥利弗·法尔(OP)和熔融石英(FS))来研究CNFs和CNCs的压缩模量。CNCs的模量值(E = 21.1 GPa,E = 28.7 GPa)在统计学上大于从CNFs获得的值(E = 12.4 GPa,E = 15.1 GPa)。此外,FS分析方法提供的估计值在统计学上显著更低。使用热重分析研究了CNFs和CNCs的热稳定性。发现CNF和CNC的起始温度(起始温度 = 228.2 °C,起始温度 = 279.9 °C)、分解温度(DTGA = 247.9 °C,DTGA = 331.4 °C)和残余物(残余物 = 34.4%,残余物 = 22.8%)之间存在显著差异。这项研究丰富了关于纤维素纳米材料热稳定性和纳米力学性能的信息,并增加了对理解CNs作为复合材料中的基质或增强剂的作用的认识。