Suppr超能文献

在热力学监测下对冰和笼形水合物形成与分解的微观断层扫描研究。

Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring.

作者信息

Arzbacher Stefan, Petrasch Jörg, Ostermann Alexander, Loerting Thomas

机构信息

Illwerke VKW Professorship for Energy Efficiency, Vorarlberg University of Applied Sciences, Hochschulstraße 1, Dornbirn 6850, Austria.

Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria.

出版信息

Materials (Basel). 2016 Aug 8;9(8):668. doi: 10.3390/ma9080668.

Abstract

Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.

摘要

笼形水合物是一种包合物,其中客体分子被困在由水分子形成的主体晶格中。它们被认为是未来能源供应和存储技术的一个有趣选择。在当前论文中,结合精确的温度控制和压力监测,对冰和四氢呋喃(THF)笼形水合物颗粒进行了延时三维显微计算机断层扫描(µCT)成像。µCT成像显示,在低温下冰和THF笼形水合物具有相似的行为,而在较高温度下(低于熔点3K),可以观察到显著差异。在冰以及THF笼形水合物中都发现了存在微孔的强烈迹象。它们在冰中稳定,而在略低于熔点的温度下在笼形水合物中不稳定。在对冰和THF笼形水合物研究的整个温度范围内,都可以观察到表面和整体结构的显著转变。此外,我们的结果表明,在230K至271K的环境压力和温度下,THF笼形水合物中会吸收分子氮。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c22f/5509279/d495ef25213b/materials-09-00668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验