Borukhovich Efim, Du Guanxing, Stratmann Matthias, Boeff Martin, Shchyglo Oleg, Hartmaier Alexander, Steinbach Ingo
Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, Bochum 44801, Germany.
Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
Materials (Basel). 2016 Aug 9;9(8):673. doi: 10.3390/ma9080673.
Martensitic steels form a material class with a versatile range of properties that can be selected by varying the processing chain. In order to study and design the desired processing with the minimal experimental effort, modeling tools are required. In this work, a full processing cycle from quenching over tempering to mechanical testing is simulated with a single modeling framework that combines the features of the phase-field method and a coupled chemo-mechanical approach. In order to perform the mechanical testing, the mechanical part is extended to the large deformations case and coupled to crystal plasticity and a linear damage model. The quenching process is governed by the austenite-martensite transformation. In the tempering step, carbon segregation to the grain boundaries and the resulting cementite formation occur. During mechanical testing, the obtained material sample undergoes a large deformation that leads to local failure. The initial formation of the damage zones is observed to happen next to the carbides, while the final damage morphology follows the martensite microstructure. This multi-scale approach can be applied to design optimal microstructures dependent on processing and materials composition.
马氏体钢构成了一类具有多种性能的材料,这些性能可以通过改变加工流程来选择。为了用最少的实验工作量研究和设计所需的加工过程,需要建模工具。在这项工作中,使用一个结合了相场法和耦合化学-力学方法特点的单一建模框架,模拟了从淬火到回火再到机械测试的完整加工周期。为了进行机械测试,将力学部分扩展到了大变形情况,并与晶体塑性和线性损伤模型耦合。淬火过程由奥氏体-马氏体转变控制。在回火步骤中,碳会偏聚到晶界并形成渗碳体。在机械测试过程中,所获得的材料样品会发生大变形,从而导致局部失效。观察到损伤区最初在碳化物附近形成,而最终的损伤形态则遵循马氏体微观结构。这种多尺度方法可用于根据加工和材料成分设计最佳微观结构。