Suppr超能文献

石墨烯纳米片对聚乙烯电绝缘性能的掺杂效应:从宏观到分子尺度

Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale.

作者信息

Jing Ziang, Li Changming, Zhao Hong, Zhang Guiling, Han Baozhong

机构信息

Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China.

College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.

出版信息

Materials (Basel). 2016 Aug 10;9(8):680. doi: 10.3390/ma9080680.

Abstract

The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green's function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials.

摘要

通过结合实验和理论方法,研究了石墨烯纳米片(GNPs)对聚乙烯(PE)电绝缘性能的掺杂效应。采用直接测量法和热刺激电流(TSC)法对纯PE和PE/GNPs复合材料的导电性能和陷阱特性进行了测试。结果发现,掺杂较小尺寸的GNPs更有利于降低PE/GNPs的电导率。具有较小尺寸GNPs的PE/GNPs复合材料主要引入深能陷阱,而随着GNPs尺寸的增加,除了深能陷阱外,还引入了浅能陷阱。这些结果也得到了密度泛函理论(DFT)和非平衡格林函数(NEGF)方法计算的证实。因此,掺杂小尺寸GNPs有利于俘获电荷载流子并提高绝缘能力,这被认为是探索高性能绝缘材料的一种有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a64/5512346/ff44abb50c2b/materials-09-00680-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验