Suppr超能文献

石墨烯修饰电极在微生物燃料电池中的应用

Applications of Graphene-Modified Electrodes in Microbial Fuel Cells.

作者信息

Yu Fei, Wang Chengxian, Ma Jie

机构信息

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai Quan Road, Shanghai 201418, China.

State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

出版信息

Materials (Basel). 2016 Sep 29;9(10):807. doi: 10.3390/ma9100807.

Abstract

Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy.

摘要

由于其优异的物理和化学性质,石墨烯改性材料在能源应用中受到越来越多的关注,这可以显著提高微生物燃料电池(MFC)的发电性能。在这篇综述中,总结了几种典型的石墨烯改性电极的合成方法,如氧化石墨还原法、自组装法和化学气相沉积法。根据石墨烯改性材料在MFC阳极和阴极室中的不同功能,组装了一系列MFC电极的设计理念,例如,提高阳极电极的生物相容性和改善细胞外电子转移效率,以及增加阴极电极的活性位点和强化还原途径。尽管MFC电极存在挑战,但石墨烯改性电极对于MFC的发展具有前景,可通过将有机废物转化为电能来解决其效率降低的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a6/5456629/01deb8b3dcd0/materials-09-00807-g001.jpg

相似文献

1
Applications of Graphene-Modified Electrodes in Microbial Fuel Cells.
Materials (Basel). 2016 Sep 29;9(10):807. doi: 10.3390/ma9100807.
2
A review on graphene / graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects.
Chemosphere. 2022 Jun;296:133983. doi: 10.1016/j.chemosphere.2022.133983. Epub 2022 Feb 15.
3
Graphene-modified electrodes for enhancing the performance of microbial fuel cells.
Nanoscale. 2015 Apr 28;7(16):7022-9. doi: 10.1039/c4nr05637j.
4
Modification of carbon felt anode with graphene/FeO composite for enhancing the performance of microbial fuel cell.
Bioprocess Biosyst Eng. 2020 Mar;43(3):373-381. doi: 10.1007/s00449-019-02233-3. Epub 2019 Oct 28.
5
Applications of Nanomaterials in Microbial Fuel Cells: A Review.
Molecules. 2022 Nov 2;27(21):7483. doi: 10.3390/molecules27217483.
6
Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell.
Chemosphere. 2019 Oct;232:396-402. doi: 10.1016/j.chemosphere.2019.05.191. Epub 2019 May 23.
7
Recent progress of graphene based nanomaterials in bioelectrochemical systems.
Sci Total Environ. 2020 Dec 20;749:141225. doi: 10.1016/j.scitotenv.2020.141225. Epub 2020 Jul 24.
8
In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
Biosens Bioelectron. 2015 Sep 15;71:387-395. doi: 10.1016/j.bios.2015.04.074. Epub 2015 Apr 24.
9
Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells.
Chemosphere. 2022 Mar;290:133184. doi: 10.1016/j.chemosphere.2021.133184. Epub 2021 Dec 7.
10
Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.
Biosens Bioelectron. 2016 Jul 15;81:32-38. doi: 10.1016/j.bios.2016.02.051. Epub 2016 Feb 18.

引用本文的文献

2
Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells.
Biofilm. 2023 Oct 10;6:100161. doi: 10.1016/j.bioflm.2023.100161. eCollection 2023 Dec 15.
3
Customized Multichannel Measurement System for Microbial Fuel Cell Characterization.
Bioengineering (Basel). 2023 May 22;10(5):624. doi: 10.3390/bioengineering10050624.
6
Recent Advances in Anodes for Microbial Fuel Cells: An Overview.
Materials (Basel). 2020 May 1;13(9):2078. doi: 10.3390/ma13092078.
8
Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells.
J Mater Chem A Mater. 2017 Dec 7;5(45):23872-23886. doi: 10.1039/c7ta06895f. Epub 2017 Nov 2.

本文引用的文献

1
Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.
ACS Appl Mater Interfaces. 2016 Mar 23;8(11):6992-7002. doi: 10.1021/acsami.5b11561. Epub 2016 Mar 9.
2
Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.
Biosens Bioelectron. 2016 Jul 15;81:103-110. doi: 10.1016/j.bios.2016.02.054. Epub 2016 Feb 23.
4
Microalgae-microbial fuel cell: A mini review.
Bioresour Technol. 2015 Dec;198:891-5. doi: 10.1016/j.biortech.2015.09.061. Epub 2015 Sep 25.
5
6
Liquid crystal polaroid glass electrode from e-waste for synchronized removal/recovery of Cr(+6) from wastewater by microbial fuel cell.
Bioresour Technol. 2015 Nov;195:96-101. doi: 10.1016/j.biortech.2015.06.078. Epub 2015 Jun 24.
7
Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells.
Chemistry. 2015 Jul 20;21(30):10634-8. doi: 10.1002/chem.201501772. Epub 2015 Jun 19.
8
9
In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
Biosens Bioelectron. 2015 Sep 15;71:387-395. doi: 10.1016/j.bios.2015.04.074. Epub 2015 Apr 24.
10
Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review.
Chemosphere. 2015 Dec;140:12-7. doi: 10.1016/j.chemosphere.2015.03.059. Epub 2015 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验