Figueroba Alberto, Bruix Albert, Kovács Gábor, Neyman Konstantin M
Departament de Ciència dels Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain.
Phys Chem Chem Phys. 2017 Aug 16;19(32):21729-21738. doi: 10.1039/c7cp02820b.
Doping oxide materials by inserting atoms of a different element in their lattices is a common procedure for modifying properties of the host oxide. Using catalytically active, yet expensive noble metals as dopants allows synthesizing materials with atomically dispersed metal atoms, which can become cost-efficient catalysts. The stability and chemical properties of the resulting materials depend on the structure of the host oxide and on the position of the dopant atoms in it. In the present work we analyze by means of density functional calculations the relative stability and redox properties of cerium dioxide (ceria) nanoparticles doped with atoms of four technologically relevant transition metals - Pt, Pd, Ni and Cu. Our calculations indicate that the dopants are most stable at surface positions of ceria nanoparticles, highlighting the role of under-coordinated sites in the preparation and characterization of doped nanostructured oxides. The energies of two catalytically important reduction reactions - the formation of oxygen vacancies and homolytic dissociative adsorption of H - are found to strongly depend on the position of the doping atoms in nanoparticulate ceria.
通过在晶格中插入不同元素的原子来掺杂氧化物材料是改变主体氧化物性质的常见方法。使用具有催化活性但昂贵的贵金属作为掺杂剂能够合成具有原子分散金属原子的材料,这些材料可以成为具有成本效益的催化剂。所得材料的稳定性和化学性质取决于主体氧化物的结构以及掺杂原子在其中的位置。在本工作中,我们通过密度泛函计算分析了掺杂四种技术相关过渡金属(铂、钯、镍和铜)原子的二氧化铈(氧化铈)纳米颗粒的相对稳定性和氧化还原性质。我们的计算表明,掺杂剂在氧化铈纳米颗粒的表面位置最稳定,突出了配位不足位点在掺杂纳米结构氧化物的制备和表征中的作用。发现两个催化重要的还原反应的能量——氧空位的形成和氢的均裂解离吸附——强烈依赖于掺杂原子在纳米颗粒氧化铈中的位置。