Zhang Wei, Pu Min, Lei Ming
State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Langmuir. 2020 Jun 2;36(21):5891-5901. doi: 10.1021/acs.langmuir.0c00644. Epub 2020 May 19.
Surface doping is a common method to improve the performance of nanostructured materials. Different dopants will affect the structure and catalytic reactivity of the support. For a comprehensive understanding of the doping effects of metals doped into CeO, we conducted density functional theory (DFT) studies on the stabilities and geometry structures of transition-metal atoms (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) doped into CeO(111), (110), and (100) surfaces. Moreover, the reactivity for H dissociation and oxygen vacancy formation are systematically investigated on M-doped CeO(100) surfaces. The greater the binding energies of doped M atoms on the CeO surface, the more difficult the formation of oxygen vacancies. The doped Co and Ir atoms do not directly participate in H activation but serve as a promoter to make the H-H bond to break easily. The Cu, Ru, Pd, Ag, Pt, and Au atoms could act as the catalytically active center for H dissociation and greatly reduce the activation energy barrier. Besides, it is easier to generate HO () and a surface oxygen vacancy from the intermediate / than from /, which is related to the acid-base interaction between H* and H* in /. This work could provide theoretical insights into the atomic structure characteristics of the transition-metal-doped CeO(100) surface and give ideas for the design of hydrogenation catalysts.
表面掺杂是提高纳米结构材料性能的常用方法。不同的掺杂剂会影响载体的结构和催化反应活性。为了全面了解掺杂到CeO中的金属的掺杂效应,我们对掺杂到CeO(111)、(110)和(100)表面的过渡金属原子(M = Fe、Co、Ni、Cu;Ru、Rh、Pd、Ag;Os、Ir、Pt、Au)的稳定性和几何结构进行了密度泛函理论(DFT)研究。此外,还系统研究了M掺杂的CeO(100)表面上H解离和氧空位形成的反应活性。掺杂的M原子在CeO表面的结合能越大,氧空位的形成就越困难。掺杂的Co和Ir原子不直接参与H活化,而是作为促进剂使H-H键容易断裂。Cu、Ru、Pd、Ag、Pt和Au原子可以作为H解离的催化活性中心,并大大降低活化能垒。此外,从中间体/比从/更容易生成HO()和表面氧空位,这与/中H和H之间的酸碱相互作用有关。这项工作可以为过渡金属掺杂的CeO(100)表面的原子结构特征提供理论见解,并为氢化催化剂的设计提供思路。