Suppr超能文献

健康人窦性心律时用于测量机电激活的机电波成像的可重复性和角度独立性

Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

作者信息

Melki Lea, Costet Alexandre, Konofagou Elisa E

机构信息

Department of Biomedical Engineering, Columbia University, New York, New York, USA.

Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.

出版信息

Ultrasound Med Biol. 2017 Oct;43(10):2256-2268. doi: 10.1016/j.ultrasmedbio.2017.06.019. Epub 2017 Aug 1.

Abstract

Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps.

摘要

机电波成像(EWI)是一种基于超声的技术,能够在体内无创地绘制出所有四个心腔的透壁机电激活情况。本研究的目的是确定EWI在评估健康人正常窦性心律(NSR)期间机电激活时的可重复性和角度独立性。在2000帧/秒的频率下,经胸在胸骨旁长轴、心尖四腔和两腔视图中对七颗健康人的心脏进行采集。在所有受试者的每个视图中连续采集两次EWI数据,而在一个病例中进行了四次连续采集。生成激活图并进行比较:(i)在同一采集中的连续心动周期内;(ii)在连续采集中的同一视图内;(iii)在不同视图中的等效左心室区域内。EWI能够表征NSR期间的机电激活,并可靠地获得相似的激活模式。对于连续的心动周期,七名受试者的两个等时线之间的平均二维相关系数为0.9893,采集中左心室壁节段的平均激活时间波动为6.19%。在不同视图中获得的平均激活时间变异性为12%,测量偏差仅为3.2毫秒。这些发现表明,EWI能够在体内经胸超声心动图中绘制人类心脏NSR期间的机电激活情况,并产生可重复且与角度无关的激活图。

相似文献

2
Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo.
Phys Med Biol. 2016 Nov 21;61(22):8105-8119. doi: 10.1088/0031-9155/61/22/8105. Epub 2016 Oct 26.
3
Electromechanical wave imaging of biologically and electrically paced canine hearts in vivo.
Ultrasound Med Biol. 2014 Jan;40(1):177-87. doi: 10.1016/j.ultrasmedbio.2013.08.019. Epub 2013 Nov 14.
4
Imaging the Propagation of the Electromechanical Wave in Heart Failure Patients with Cardiac Resynchronization Therapy.
Pacing Clin Electrophysiol. 2017 Jan;40(1):35-45. doi: 10.1111/pace.12964. Epub 2016 Dec 2.
5
Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo.
Ultrasound Med Biol. 2018 Nov;44(11):2241-2249. doi: 10.1016/j.ultrasmedbio.2018.06.006. Epub 2018 Aug 6.
6
Electromechanical wave imaging of normal and ischemic hearts in vivo.
IEEE Trans Med Imaging. 2010 Mar;29(3):625-35. doi: 10.1109/TMI.2009.2030186. Epub 2009 Aug 25.
7
Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm.
Heart Rhythm. 2016 Nov;13(11):2221-2227. doi: 10.1016/j.hrthm.2016.08.010. Epub 2016 Aug 4.
8
High Frame Rate Ultrasound for Electromechanical Wave Imaging to Differentiate Endocardial From Epicardial Myocardial Activation.
Ultrasound Med Biol. 2020 Feb;46(2):405-414. doi: 10.1016/j.ultrasmedbio.2019.10.017. Epub 2019 Nov 22.
9
3D-rendered Electromechanical Wave Imaging for Localization of Accessory Pathways in Wolff-Parkinson-White Minors.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6192-6195. doi: 10.1109/EMBC.2019.8857876.
10
Imaging the electromechanical activity of the heart in vivo.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8565-70. doi: 10.1073/pnas.1011688108. Epub 2011 May 13.

引用本文的文献

2
Electromechanical Wave Imaging With Machine Learning for Automated Isochrone Generation.
IEEE Trans Med Imaging. 2021 Sep;40(9):2258-2271. doi: 10.1109/TMI.2021.3074808. Epub 2021 Aug 31.
4
Noninvasive localization of cardiac arrhythmias using electromechanical wave imaging.
Sci Transl Med. 2020 Mar 25;12(536). doi: 10.1126/scitranslmed.aax6111.
5
Localization of Accessory Pathways in Pediatric Patients With Wolff-Parkinson-White Syndrome Using 3D-Rendered Electromechanical Wave Imaging.
JACC Clin Electrophysiol. 2019 Apr;5(4):427-437. doi: 10.1016/j.jacep.2018.12.001. Epub 2019 Jan 30.
6
Optimization of Transmit Parameters in Cardiac Strain Imaging With Full and Partial Aperture Coherent Compounding.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):684-696. doi: 10.1109/TUFFC.2018.2807765.
7
Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart.
Med Phys. 2017 Sep;44(9):4766-4772. doi: 10.1002/mp.12411. Epub 2017 Jul 28.

本文引用的文献

1
Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo.
Ultrasound Med Biol. 2018 Nov;44(11):2241-2249. doi: 10.1016/j.ultrasmedbio.2018.06.006. Epub 2018 Aug 6.
2
3D Myocardial Elastography In Vivo.
IEEE Trans Med Imaging. 2017 Feb;36(2):618-627. doi: 10.1109/TMI.2016.2623636. Epub 2016 Nov 1.
3
Imaging the Propagation of the Electromechanical Wave in Heart Failure Patients with Cardiac Resynchronization Therapy.
Pacing Clin Electrophysiol. 2017 Jan;40(1):35-45. doi: 10.1111/pace.12964. Epub 2016 Dec 2.
4
Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo.
Phys Med Biol. 2016 Nov 21;61(22):8105-8119. doi: 10.1088/0031-9155/61/22/8105. Epub 2016 Oct 26.
5
Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm.
Heart Rhythm. 2016 Nov;13(11):2221-2227. doi: 10.1016/j.hrthm.2016.08.010. Epub 2016 Aug 4.
6
3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo.
IEEE Trans Med Imaging. 2017 Feb;36(2):357-365. doi: 10.1109/TMI.2016.2596706. Epub 2016 Jul 29.
8
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16.
9
Intracardiac myocardial elastography in canines and humans in vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):337-49. doi: 10.1109/TUFFC.2014.006784.
10
Epidemiology of atrial fibrillation: European perspective.
Clin Epidemiol. 2014 Jun 16;6:213-20. doi: 10.2147/CLEP.S47385. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验