Thompson Nathan E, Almécija Sergio
Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA; Institut Català de Paleontologia Miquel Crusafont (ICP), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Carrer de Les Columnes Sense Número, Campus de La UAB, 08193, Cerdanyola Del Vallès, Barcelona, Spain.
J Hum Evol. 2017 Sep;110:18-36. doi: 10.1016/j.jhevol.2017.05.012. Epub 2017 Jul 3.
Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution.
由于灵长类动物的脊椎公式与运动行为和整体身体结构相关,长期以来一直受到研究。了解类人猿生命树中的祖先脊椎公式对于解释猿类之间的进化模式,以及批判性地评估向人类两足行走过渡过程中涉及的形态适应至关重要。尽管基于现存和化石物种提出了许多进化假说,但缺乏应用定量系统发育方法来全面重建祖先脊椎公式并正式检验脊椎进化模式的研究。为了估计类人猿脊椎进化最可能的情况,我们采用了一种迭代祖先状态重建方法,以确定猿类、人类和其他类人猿外类群可能的祖先脊椎数量。分析中纳入了所有已知区域脊椎数量的猿类和人类化石分类群。通过改变有争议位置的化石分类群的系统发育位置,以及改变形态不确定的分类群中推断的椎骨数量,进行了敏感性迭代。我们的祖先状态重建结果总体上支持人类进化的短背假说,即黑猩猩和人类的最后一个共同祖先拥有7:13:4:6(颈椎:胸椎:腰椎:骶椎)的脊椎公式。我们的结果表明,腰椎数量的最初减少和骶椎数量的增加是冠类人猿的一个共衍征(支持了关于大猿 - 人类进化枝起源的中背假说)。腰椎数量的进一步减少在猩猩和非洲猿类中独立发生。我们的结果突出了脊椎数量进化的复杂性和趋同性质,几乎没有支持人类进化的长背假说。