Suppr超能文献

口服生物制剂的药物-器械组合给药。

Oral delivery of biologics using drug-device combinations.

机构信息

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Curr Opin Pharmacol. 2017 Oct;36:8-13. doi: 10.1016/j.coph.2017.07.003. Epub 2017 Aug 2.

Abstract

Orally administered devices could enable the systemic uptake of biologic therapeutics by engineering around the physiological barriers present in the gastrointestinal (GI) tract. Such devices aim to shield cargo from degradative enzymes and increase the diffusion rate of medication through the GI mucosa. In order to achieve clinical relevance, these designs must significantly increase systemic drug bioavailability, deliver a clinically relevant dose and remain safe when taken frequently. Such an achievement stands to reduce our dependence on needle injections, potentially increasing patient adherence and reducing needle-associated complications. Here we discuss the physical and chemical constraints imposed by the GI organs and use these to develop a set of boundary conditions on oral device designs for the delivery of macromolecules. We critically examine how device size affects the rate of intestinal obstruction and hinders the loading capacity of poorly soluble protein drugs. We then discuss how current orally administered devices could solve the problem of tissue permeation and conclude that these physical methods stand to provide an efficacious set of alternatives to the classic hypodermic needle.

摘要

口服给药装置可以通过绕过胃肠道 (GI) 中存在的生理屏障来实现生物治疗药物的全身吸收。这些装置旨在保护药物不受降解酶的影响,并增加药物通过 GI 黏膜的扩散速度。为了实现临床相关性,这些设计必须显著提高系统药物生物利用度,输送临床相关剂量,并在频繁使用时保持安全。这一成就有望减少我们对针注射的依赖,可能会提高患者的依从性并减少与针相关的并发症。在这里,我们讨论了 GI 器官施加的物理和化学限制,并利用这些限制为大分子的口服给药装置设计制定了一组边界条件。我们批判性地研究了装置尺寸如何影响肠梗阻的速度并阻碍了难溶性蛋白质药物的载药量。然后,我们讨论了目前的口服给药装置如何解决组织渗透问题,并得出结论,这些物理方法为经典的皮下注射针提供了一套有效的替代方法。

相似文献

1
Oral delivery of biologics using drug-device combinations.
Curr Opin Pharmacol. 2017 Oct;36:8-13. doi: 10.1016/j.coph.2017.07.003. Epub 2017 Aug 2.
2
Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery.
Expert Opin Drug Deliv. 2018 Aug;15(8):759-770. doi: 10.1080/17425247.2018.1504017. Epub 2018 Jul 27.
3
Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes.
AAPS J. 2017 May;19(3):652-668. doi: 10.1208/s12248-017-0054-z. Epub 2017 Feb 13.
4
Dosing considerations for inhaled biologics.
Int J Pharm. 2018 Oct 5;549(1-2):58-66. doi: 10.1016/j.ijpharm.2018.07.054. Epub 2018 Jul 24.
5
Microfabricated devices for oral drug delivery.
Lab Chip. 2018 Aug 7;18(16):2348-2358. doi: 10.1039/c8lc00408k.
6
Orally ingestible medical devices for gut engineering.
Adv Drug Deliv Rev. 2020;165-166:142-154. doi: 10.1016/j.addr.2020.05.004. Epub 2020 May 13.
7
Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics.
AAPS PharmSciTech. 2017 Jan 1;18(1):3-14. doi: 10.1208/s12249-016-0525-z. Epub 2016 Apr 15.
8
Oral Delivery of Biologics for Precision Medicine.
Adv Mater. 2020 Apr;32(13):e1901935. doi: 10.1002/adma.201901935. Epub 2019 Jun 20.
9
Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery.
ACS Nano. 2016 Jun 28;10(6):5873-81. doi: 10.1021/acsnano.6b00809. Epub 2016 Jun 13.
10
Design control considerations for biologic-device combination products.
Adv Drug Deliv Rev. 2017 Mar;112:101-105. doi: 10.1016/j.addr.2017.01.003. Epub 2017 Jan 11.

引用本文的文献

1
Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review.
Int J Nanomedicine. 2025 Feb 20;20:2241-2252. doi: 10.2147/IJN.S505427. eCollection 2025.
2
Gastrointestinal Permeation Enhancers Beyond Sodium Caprate and SNAC - What is Coming Next?
Adv Sci (Weinh). 2024 Sep;11(33):e2400843. doi: 10.1002/advs.202400843. Epub 2024 Jun 17.
3
Oral administration microrobots for drug delivery.
Bioact Mater. 2024 May 21;39:163-190. doi: 10.1016/j.bioactmat.2024.05.005. eCollection 2024 Sep.
4
Recent advances in oral insulin delivery technologies.
J Control Release. 2024 Feb;366:221-230. doi: 10.1016/j.jconrel.2023.12.045. Epub 2024 Jan 4.
5
Untethered shape-changing devices in the gastrointestinal tract.
Expert Opin Drug Deliv. 2023 Jul-Dec;20(12):1801-1822. doi: 10.1080/17425247.2023.2291450. Epub 2023 Dec 29.
6
Oral delivery of RNAi for cancer therapy.
Cancer Metastasis Rev. 2023 Sep;42(3):699-724. doi: 10.1007/s10555-023-10099-x. Epub 2023 Mar 27.
8
Autonomous Untethered Microinjectors for Gastrointestinal Delivery of Insulin.
ACS Nano. 2022 Oct 25;16(10):16211-16220. doi: 10.1021/acsnano.2c05098. Epub 2022 Oct 6.
10
Foundations of gastrointestinal-based drug delivery and future developments.
Nat Rev Gastroenterol Hepatol. 2022 Apr;19(4):219-238. doi: 10.1038/s41575-021-00539-w. Epub 2021 Nov 16.

本文引用的文献

1
Intestinal mucoadhesive devices for oral delivery of insulin.
Bioeng Transl Med. 2016 Aug 19;1(3):338-346. doi: 10.1002/btm2.10015. eCollection 2016 Sep.
2
Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.
Biomaterials. 2017 Jun;130:28-41. doi: 10.1016/j.biomaterials.2017.03.028. Epub 2017 Mar 22.
3
An oral microjet vaccination system elicits antibody production in rabbits.
Sci Transl Med. 2017 Mar 8;9(380). doi: 10.1126/scitranslmed.aaf6413.
4
Ultrasound-Mediated Delivery of RNA to Colonic Mucosa of Live Mice.
Gastroenterology. 2017 Apr;152(5):1151-1160. doi: 10.1053/j.gastro.2017.01.002. Epub 2017 Jan 11.
5
Complexation hydrogels as potential carriers in oral vaccine delivery systems.
Eur J Pharm Biopharm. 2017 Mar;112:138-142. doi: 10.1016/j.ejpb.2016.11.029. Epub 2016 Nov 27.
6
In vitro and ex vivo strategies for intracellular delivery.
Nature. 2016 Oct 13;538(7624):183-192. doi: 10.1038/nature19764.
7
Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery.
ACS Nano. 2016 Jun 28;10(6):5873-81. doi: 10.1021/acsnano.6b00809. Epub 2016 Jun 13.
8
Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles.
Expert Opin Drug Deliv. 2016;13(5):621-32. doi: 10.1517/17425247.2016.1160889. Epub 2016 Mar 24.
9
Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials.
Adv Drug Deliv Rev. 2016 Nov 15;106(Pt B):223-241. doi: 10.1016/j.addr.2016.02.004. Epub 2016 Feb 24.
10
Needle free injection technology: A complete insight.
Int J Pharm Investig. 2015 Oct-Dec;5(4):192-9. doi: 10.4103/2230-973X.167662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验