Département des Sciences Animales, Université Laval, Québec, QC, Canada G1V 0A6.
Département de Phytologie, Université Laval, Québec, QC, Canada G1V 0A6.
J Dairy Sci. 2017 Oct;100(10):8614-8629. doi: 10.3168/jds.2016-11984. Epub 2017 Aug 2.
Our objective was to explore the trade-offs between economic performance (farm net income, FNI) and environmental outcomes (whole-farm P and N balances) of dairy farms in Wisconsin (WI; United States) and Québec (QC; Canada). An Excel-based linear program model (N-CyCLES; nutrient cycling: crops, livestock, environment, and soil) was developed to optimize feeding, cropping, and manure management as a single unit of management. In addition to FNI, P and N balances model outputs included (1) the mix of up to 9 home-grown and 17 purchased feeds for up to 5 animal groups, (2) the mix of up to 5 crop rotations in up to 5 land units and c) the mix of up to 7 fertilizers (solid and liquid manure and 5 commercial fertilizers) to allocate in each land unit. The model was parameterized with NRC nutritional guidelines and regional nutrient management planning rules. Simulations were conducted on a typical WI farm of 107 cows and 151 ha of cropland and, a Southern QC farm of 87 cows and 142 ha of cropland and all results were expressed per kg of fat- and protein-corrected milk (FPCM). In absence of constraints on P and N balances, maximum FNI was 0.12 and 0.11 $/kg of FPCM for WI and QC, respectively, with P and N balances of 1.05 and 14.29 g/kg of FPCM in WI but 0.60 and 15.70 g/kg of FPCM in QC. The achievable reduction (balance at maximum FNI minus balance when the simulation objective was to minimize P or N balance) was 0.31 and 0.54 g of P/kg of FPCM (29 and 89% reduction), but 2.37 and 3.31 g of N/kg of FPCM (17 and 24% reduction) in WI and QC, respectively. Among other factors, differences in animal unit per hectare and reliance on biological N fixation may have contributed to lower achievable reductions of whole-farm balances in WI compared with QC. Subsequent simulations to maximize FNI under increasing constraints on nutrient balances revealed that it was possible to reduce P balance, N balance, and both together by up to 33% without a substantial effect on FNI. Partial reduction in P balance reduced N balance (synergetic effect) in WI, but increased N balance (antagonistic effect) in QC. In contrast, reducing N balance increased P balance in both regions, albeit in different magnitudes. The regional comparison highlighted the importance of site-specific conditions on modeling outcomes. This study demonstrated that even when recommended guidelines are followed for herd nutrition and crop fertilization, the optimization of herd feeding, cropping, and manure spreading as a single unit of management may help identify management options that preserve FNI, while substantially reducing whole-farm nutrient balance.
我们的目标是探索威斯康星州(美国)和魁北克省(加拿大)的奶牛场在经济绩效(农场净收入,FNI)和环境成果(全农场 P 和 N 平衡)之间的权衡。我们开发了一个基于 Excel 的线性规划模型(N-CyCLES;养分循环:作物、牲畜、环境和土壤),以优化饲养、种植和粪便管理,作为单一管理单元。除了 FNI 之外,P 和 N 平衡模型的输出还包括(1)最多 9 种本地种植和 17 种购买饲料的混合物,用于最多 5 个动物群体,(2)最多 5 个轮作的混合物,最多 5 个土地单位和 c)最多 7 种肥料(固体和液体粪便和 5 种商业肥料)的混合物,用于在每个土地单位中分配。该模型使用 NRC 营养指南和区域养分管理规划规则进行参数化。在威斯康星州的一个典型 107 头牛和 151 公顷耕地的农场和一个南部魁北克省的 87 头牛和 142 公顷耕地的农场上进行了模拟,所有结果均以每公斤脂肪和蛋白质校正奶(FPCM)表示。在没有 P 和 N 平衡约束的情况下,威斯康星州和魁北克省的最大 FNI 分别为 0.12 和 0.11 美元/公斤 FPCM,威斯康星州的 P 和 N 平衡分别为 1.05 和 14.29 克/公斤 FPCM,但魁北克省的 P 和 N 平衡分别为 0.60 和 15.70 克/公斤 FPCM。可实现的减少量(在最大 FNI 时的平衡减去模拟目标是最小化 P 或 N 平衡时的平衡)分别为 0.31 和 0.54 克 P/公斤 FPCM(29%和 89%的减少),但在威斯康星州和魁北克省分别为 2.37 和 3.31 克 N/公斤 FPCM(17%和 24%的减少)。除其他因素外,动物单位/公顷的差异和对生物固氮的依赖可能导致威斯康星州全农场平衡的可实现减少量低于魁北克省。随后在不断增加养分平衡约束的情况下进行的最大化 FNI 的模拟表明,在不显著影响 FNI 的情况下,有可能将 P 平衡、N 平衡和两者同时减少多达 33%。P 平衡的部分减少降低了 N 平衡(协同效应)在威斯康星州,但增加了 N 平衡(拮抗效应)在魁北克省。相比之下,在两个地区,减少 N 平衡都会增加 P 平衡,尽管幅度不同。区域比较突出了特定地点条件对建模结果的重要性。本研究表明,即使遵循了针对畜群营养和作物施肥的推荐指南,对畜群饲养、种植和粪便管理的优化作为单一管理单元,也有助于确定在保持 FNI 的同时,大幅减少全农场养分平衡的管理选项。