Suppr超能文献

在电子病历数据库中使用非处方对乙酰氨基酚和布洛芬的渠道:证据和影响。

Channeling in the Use of Nonprescription Paracetamol and Ibuprofen in an Electronic Medical Records Database: Evidence and Implications.

机构信息

Janssen Research and Development, LLC, 1125 Harbourton-Trenton Rd, Titusville, NJ, 08560, USA.

Johnson and Johnson, 1125 Harbourton-Trenton Rd, Titusville, NJ, 08560, USA.

出版信息

Drug Saf. 2017 Dec;40(12):1279-1292. doi: 10.1007/s40264-017-0581-7.

Abstract

INTRODUCTION

Over-the-counter analgesics such as paracetamol and ibuprofen are among the most widely used, and having a good understanding of their safety profile is important to public health. Prior observational studies estimating the risks associated with paracetamol use acknowledge the inherent limitations of these studies. One threat to the validity of observational studies is channeling bias, i.e. the notion that patients are systematically exposed to one drug or the other, based on current and past comorbidities, in a manner that affects estimated relative risk.

OBJECTIVES

The aim of this study was to examine whether evidence of channeling bias exists in observational studies that compare paracetamol with ibuprofen, and, if so, the extent to which confounding adjustment can mitigate this bias.

STUDY DESIGN AND SETTING

In a cohort of 140,770 patients, we examined whether those who received any paracetamol (including concomitant users) were more likely to have prior diagnoses of gastrointestinal (GI) bleeding, myocardial infarction (MI), stroke, or renal disease than those who received ibuprofen alone. We compared propensity score distributions between drugs, and examined the degree to which channeling bias could be controlled using a combination of negative control disease outcome models and large-scale propensity score matching. Analyses were conducted using the Clinical Practice Research Datalink.

RESULTS

The proportions of prior MI, GI bleeding, renal disease, and stroke were significantly higher in those prescribed any paracetamol versus ibuprofen alone, after adjusting for sex and age. We were not able to adequately remove selection bias using a selected set of covariates for propensity score adjustment; however, when we fit the propensity score model using a substantially larger number of covariates, evidence of residual bias was attenuated.

CONCLUSIONS

Although using selected covariates for propensity score adjustment may not sufficiently reduce bias, large-scale propensity score matching offers a novel approach to consider to mitigate the effects of channeling bias.

摘要

简介

扑热息痛和布洛芬等非处方止痛药是使用最广泛的药物之一,了解它们的安全性对于公共健康非常重要。先前估计使用扑热息痛相关风险的观察性研究承认了这些研究的固有局限性。观察性研究有效性的一个威胁是渠道偏差,即根据当前和过去的合并症,患者系统地暴露于一种药物或另一种药物的观念,这种方式会影响估计的相对风险。

目的

本研究旨在检查比较扑热息痛和布洛芬的观察性研究中是否存在渠道偏差证据,如果存在,调整混杂因素在多大程度上可以减轻这种偏差。

研究设计和设置

在 140770 名患者的队列中,我们检查了接受任何扑热息痛(包括同时使用的患者)的患者与单独接受布洛芬的患者相比,是否更有可能有先前的胃肠道(GI)出血、心肌梗死(MI)、中风或肾脏疾病的诊断。我们比较了两种药物的倾向评分分布,并检查了使用负面对照疾病结局模型和大规模倾向评分匹配相结合的方式控制渠道偏差的程度。使用临床实践研究数据链接进行了分析。

结果

在调整性别和年龄后,与单独使用布洛芬的患者相比,处方中使用任何扑热息痛的患者先前发生 MI、GI 出血、肾脏疾病和中风的比例明显更高。我们无法通过选择一组倾向评分调整的协变量来充分消除选择偏差;然而,当我们使用大量的协变量拟合倾向评分模型时,残留偏差的证据减弱了。

结论

尽管使用选择的协变量进行倾向评分调整可能不足以减少偏差,但大规模倾向评分匹配提供了一种新颖的方法来考虑减轻渠道偏差的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1847/5688206/98a4373a1635/40264_2017_581_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验