Oliveira Vytor, Cremer Dieter, Kraka Elfi
Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States.
J Phys Chem A. 2017 Sep 14;121(36):6845-6862. doi: 10.1021/acs.jpca.7b06479. Epub 2017 Aug 31.
A diverse set of 100 chalcogen-bonded complexes comprising neutral, cationic, anionic, divalent, and double bonded chalcogens has been investigated using ωB97X-D/aug-cc-pVTZ to determine geometries, binding energies, electron and energy density distributions, difference density distributions, vibrational frequencies, local stretching force constants, and associated bond strength orders. The accuracy of ωB97X-D was accessed by CCSD(T)/aug-cc-pVTZ calculations of a subset of 12 complexes and by the CCSD(T)/aug-cc-pVTZ //ωB97X-D binding energies of 95 complexes. Most of the weak chalcogen bonds can be rationalized on the basis of electrostatic contributions, but as the bond becomes stronger, covalent contributions can assume a primary role in the strength and geometry of the complexes. Covalency in chalcogen bonds involves the charge transfer from a lone pair orbital of a Lewis base into the σ* orbital of a divalent chalcogen or a π* orbital of a double bonded chalcogen. We describe for the first time a symmetric chalcogen-bonded homodimer stabilized by a charge transfer from a lone pair orbital into a π* orbital. New polymeric materials based on chalcogen bonds should take advantage of the extra stabilization granted by multiple chalcogen bonds, as is shown for 1,2,5-telluradiazole dimers.
使用ωB97X-D/aug-cc-pVTZ研究了一组多样的100个硫族元素键合配合物,这些配合物包括中性、阳离子、阴离子、二价和双键硫族元素,以确定其几何结构、结合能、电子和能量密度分布、差分密度分布、振动频率、局部拉伸力常数以及相关的键强度顺序。通过对12个配合物子集进行CCSD(T)/aug-cc-pVTZ计算以及对95个配合物进行CCSD(T)/aug-cc-pVTZ//ωB97X-D结合能计算,评估了ωB97X-D的准确性。大多数弱硫族元素键可以基于静电贡献来解释,但随着键变强,共价贡献在配合物的强度和几何结构中可能起主要作用。硫族元素键中的共价性涉及电荷从路易斯碱的孤对轨道转移到二价硫族元素的σ轨道或双键硫族元素的π轨道。我们首次描述了一种通过电荷从孤对轨道转移到π*轨道而稳定的对称硫族元素键合同二聚体。基于硫族元素键的新型聚合物材料应利用多个硫族元素键提供的额外稳定性,如1,2,5-碲二唑二聚体所示。