Suppr超能文献

胶质母细胞瘤干细胞利用αvβ8整合素-TGFβ1信号轴来驱动肿瘤的起始和进展。

Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1 signaling axis to drive tumor initiation and progression.

作者信息

Guerrero P A, Tchaicha J H, Chen Z, Morales J E, McCarty N, Wang Q, Sulman E P, Fuller G, Lang F F, Rao G, McCarty J H

机构信息

Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA.

The Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Oncogene. 2017 Nov 23;36(47):6568-6580. doi: 10.1038/onc.2017.248. Epub 2017 Aug 7.

Abstract

Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin αvβ8 and its latent transforming growth factor β1 (TGFβ1) protein ligand have central roles in promoting niche co-option and GBM initiation. αvβ8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of β8 cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that αvβ8 integrin regulates tumor development, in part, by driving TGFβ1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the αvβ8 integrin-TGFβ1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM.

摘要

胶质母细胞瘤(GBM)是一种原发性脑癌,其中含有归巢于特殊血管周围微环境的干细胞样癌细胞(GSC)群体。尽管这些事件背后的途径在很大程度上仍然未知,但GSC与其微环境的相互作用会影响自我更新、分化和耐药性。在这里,我们报告整合素αvβ8及其潜在的转化生长因子β1(TGFβ1)蛋白配体在促进微环境选择和GBM起始中起核心作用。αvβ8整合素在GSC中高度表达,并且对于体外自我更新和谱系定向至关重要。从新鲜切除的人类GBM样本中分离β8细胞也揭示了这种整合素在体内肿瘤发生中的必要性。全转录组测序表明,αvβ8整合素部分通过驱动TGFβ1诱导的DNA复制和有丝分裂检查点进展来调节肿瘤发展。总体而言,这些数据确定αvβ8整合素 - TGFβ1信号轴对于血管周围微环境的利用至关重要,并确定了抑制GBM患者肿瘤生长和进展的潜在治疗靶点。

相似文献

1
Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1 signaling axis to drive tumor initiation and progression.
Oncogene. 2017 Nov 23;36(47):6568-6580. doi: 10.1038/onc.2017.248. Epub 2017 Aug 7.
3
αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion.
Mol Biol Cell. 2013 Feb;24(4):474-82. doi: 10.1091/mbc.E12-07-0521. Epub 2013 Jan 2.
4
A Novel Role of BIRC3 in Stemness Reprogramming of Glioblastoma.
Int J Mol Sci. 2021 Dec 28;23(1):297. doi: 10.3390/ijms23010297.
5
Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells.
J Neurooncol. 2019 Jul;143(3):417-428. doi: 10.1007/s11060-019-03192-1. Epub 2019 May 21.
6
A CDC20-APC/SOX2 Signaling Axis Regulates Human Glioblastoma Stem-like Cells.
Cell Rep. 2015 Jun 23;11(11):1809-21. doi: 10.1016/j.celrep.2015.05.027. Epub 2015 Jun 11.
7
PNIPAAm-co-Jeffamine (PNJ) scaffolds as in vitro models for niche enrichment of glioblastoma stem-like cells.
Biomaterials. 2017 Oct;143:149-158. doi: 10.1016/j.biomaterials.2017.05.007. Epub 2017 May 6.
8
The effects of type I interferon on glioblastoma cancer stem cells.
Biochem Biophys Res Commun. 2017 Sep 16;491(2):343-348. doi: 10.1016/j.bbrc.2017.07.098. Epub 2017 Jul 18.
10
mA RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells.
Cell Rep. 2017 Mar 14;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059.

引用本文的文献

1
Integrins in Cancer Drug Resistance: Molecular Mechanisms and Clinical Implications.
Int J Mol Sci. 2025 Mar 28;26(7):3143. doi: 10.3390/ijms26073143.
3
Clotting Promotes Glioma Growth and Infiltration Through Activation of Focal Adhesion Kinase.
Cancer Res Commun. 2024 Dec 1;4(12):3124-3136. doi: 10.1158/2767-9764.CRC-24-0164.
4
Implications of PD-L1 expression on the immune microenvironment in HER2-positive gastric cancer.
Mol Cancer. 2024 Aug 20;23(1):169. doi: 10.1186/s12943-024-02085-w.
5
7
Mechanical Constraints in Tumor Guide Emergent Spatial Patterns of Glioblastoma Cancer Stem Cells.
Mechanobiol Med. 2024 Mar;2(1). doi: 10.1016/j.mbm.2023.100027. Epub 2023 Oct 29.
8
Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2318591121. doi: 10.1073/pnas.2318591121. Epub 2024 May 13.
10
The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma.
Cancers (Basel). 2023 May 4;15(9):2613. doi: 10.3390/cancers15092613.

本文引用的文献

2
Dichotomous roles of TGF-β in human cancer.
Biochem Soc Trans. 2016 Oct 15;44(5):1441-1454. doi: 10.1042/BST20160065.
3
The complexity of integrins in cancer and new scopes for therapeutic targeting.
Br J Cancer. 2016 Oct 25;115(9):1017-1023. doi: 10.1038/bjc.2016.312. Epub 2016 Sep 29.
4
The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma.
Mol Cancer Res. 2016 Dec;14(12):1277-1287. doi: 10.1158/1541-7786.MCR-16-0251. Epub 2016 Sep 21.
5
Integrins AV and B8 Gene Polymorphisms and Risk for Intracerebral Hemorrhage in Greek and Polish Populations.
Neuromolecular Med. 2017 Mar;19(1):69-80. doi: 10.1007/s12017-016-8429-3. Epub 2016 Jul 30.
7
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice.
Transl Stroke Res. 2016 Dec;7(6):488-496. doi: 10.1007/s12975-016-0478-2. Epub 2016 Jun 29.
8
Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins.
Cold Spring Harb Perspect Biol. 2016 Jun 1;8(6):a021907. doi: 10.1101/cshperspect.a021907.
9
Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.
Cell Rep. 2015 Dec 22;13(11):2425-2439. doi: 10.1016/j.celrep.2015.11.021. Epub 2015 Dec 7.
10
Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain.
Development. 2015 Dec 15;142(24):4363-73. doi: 10.1242/dev.113746. Epub 2015 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验