Suppr超能文献

动态表面增强拉曼光谱和化学计量学方法快速检测和智能识别人尿中的甲基苯丙胺和 3,4-亚甲二氧基甲基苯丙胺。

Dynamic surface-enhanced Raman spectroscopy and Chemometric methods for fast detection and intelligent identification of methamphetamine and 3, 4-Methylenedioxy methamphetamine in human urine.

机构信息

Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, Hefei 230601, China.

Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031,China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Jan 15;189:1-7. doi: 10.1016/j.saa.2017.08.004. Epub 2017 Aug 2.

Abstract

Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of >92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2μL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.

摘要

传统的表面增强拉曼光谱(SERS)由于灵敏度低和拉曼信号不可靠,以及光谱需要手动干预等原因,在便携式拉曼光谱仪上快速检测尿液中的药物仍然具有挑战性。在这里,我们开发了一种使用化学计量学方法和动态 SERS(D-SERS)与巯基聚乙二醇(mPEG-SH)包覆的金纳米棒(GNRs)检测尿液中药物的新方法。D-SERS 与均匀的 GNRs 结合可以获得巨大的增强,并且信号也具有很高的重现性。在此基础上,我们使用 D-SERS 获得了尿液、含甲基苯丙胺(MAMP)的尿液和含 3,4-亚甲二氧基甲基苯丙胺(MDMA)的尿液的光谱。同时,引入了一些化学计量学方法对光谱进行智能和自动分析。首先,通过 K-means 选择关键状态的光谱。然后,通过随机森林(RF)与特征选择和主成分分析(PCA)提出光谱,以开发识别模型。模型的识别准确率分别为 100%、98.7%和 96.7%。为了进一步验证实际问题中的效果,我们使用 D-SERS 检测了含有 0.4、3、30ppm MAMP 的吸毒者尿液样本,并通过分类模型进行了识别。>92.0%的高识别准确率可以满足实际应用的需求。此外,RF 分类模型的参数优化简单。与一般实验室方法相比,使用 D-SERS 检测尿液光谱的过程仅需 2 分钟和 2μL 样本量,基于化学计量学方法的光谱识别可以在几秒钟内完成。验证了该方法能够提供准确、方便、快速的尿液中药物检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验