Suppr超能文献

通过表面增强拉曼光谱和多元统计技术对呼吸道合胞病毒(RSV)毒株进行鉴定和分类。

Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques.

作者信息

Shanmukh S, Jones L, Zhao Y-P, Driskell J D, Tripp R A, Dluhy R A

机构信息

Nanoscale Science and Engineering Center, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.

出版信息

Anal Bioanal Chem. 2008 Mar;390(6):1551-5. doi: 10.1007/s00216-008-1851-0. Epub 2008 Jan 31.

Abstract

There is a critical need for a rapid and sensitive means of detecting viruses. Recent reports from our laboratory have shown that surface-enhanced Raman spectroscopy (SERS) can meet these needs. In this study, SERS was used to obtain the Raman spectra of respiratory syncytial virus (RSV) strains A/Long, B1, and A2. SERS-active substrates composed of silver nanorods were fabricated using an oblique angle vapor deposition method. The SERS spectra obtained for each virus were shown to possess a high degree of reproducibility. Based on their intrinsic SERS spectra, the four virus strains were readily detected and classified using the multivariate statistical methods principal component analysis (PCA) and hierarchical cluster analysis (HCA). The chemometric results show that PCA is able to separate the three virus strains unambiguously, whereas the HCA method was able to readily distinguish an A2 strain-related G gene mutant virus (DeltaG) from the A2 strain. The results described here demonstrate that SERS, in combination with multivariate statistical methods, can be utilized as a highly sensitive and rapid viral identification and classification method.

摘要

迫切需要一种快速且灵敏的病毒检测方法。我们实验室最近的报告表明,表面增强拉曼光谱(SERS)能够满足这些需求。在本研究中,SERS被用于获取呼吸道合胞病毒(RSV)A/Long、B1和A2株的拉曼光谱。使用倾斜角气相沉积法制备了由银纳米棒组成的SERS活性基底。所获得的每种病毒的SERS光谱显示出高度的可重复性。基于其固有的SERS光谱,利用多元统计方法主成分分析(PCA)和层次聚类分析(HCA)可以轻松检测和分类这四种病毒株。化学计量学结果表明,PCA能够明确区分这三种病毒株,而HCA方法能够轻松区分与A2株相关的G基因突变病毒(DeltaG)和A2株。此处描述的结果表明,SERS与多元统计方法相结合,可作为一种高度灵敏且快速的病毒鉴定和分类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验