Suppr超能文献

在温暖的海洋中进行光合作用产生氧气:以马尾藻海为例。

Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

机构信息

Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

ClimateLab, Symbion Science Park, Copenhagen, Denmark.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0329.

Abstract

Photosynthetic O production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

摘要

光合作用产生的氧气可以成为海洋次表层水体中氧气的一个重要来源,尤其是在海洋中永久性分层的贫营养区,在这些区域,深层叶绿素最大值(DCM)中产生的氧气不太可能逸出。如今,永久性分层区域大约占全球海洋的 40%,而且预计在变暖的海洋中,其范围还会扩大。因此,预测未来海洋的氧气状况需要更好地了解光合作用产生的氧气对变暖海洋的潜在反应。基于我们自己以及在贫营养区对水柱过程的观测结果,我们开发了一个描述马尾藻海光合作用产生氧气的一维水柱模型,以量化光合作用对氧气向下通量的重要性,并研究其在变暖的海洋中可能会受到怎样的影响。模型中通过营养物质(包括涡流诱导混合)的垂直混合和固氮作用来驱动光合作用,结果发现光合作用大大增加了相对于单纯物理化学过程的氧气向下通量。变暖(2°C)的表层海水不会显著改变 DCM 处的氧气产量。再矿化率增加 15%(假设  = 2;2°C 升温)也不会对净次表层氧气积累产生显著影响。然而,颗粒有机物质(POM)和溶解有机物质(DOM)相对产量的变化会导致净次表层氧气产生相对较大的变化。由于 POM/DOM 的产生是浮游生物群落组成的函数,这意味着浮游生物生物多样性和食物网结构可能是影响变暖海洋中氧气产生的重要因素。本文是“变暖世界中的海洋通风和脱氧作用”专题的一部分。

相似文献

1
Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0329.
2
Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0319.
3
Ocean deoxygenation in a warming world.
Ann Rev Mar Sci. 2010;2:199-229. doi: 10.1146/annurev.marine.010908.163855.
4
Biomass changes and trophic amplification of plankton in a warmer ocean.
Glob Chang Biol. 2014 Jul;20(7):2124-39. doi: 10.1111/gcb.12562. Epub 2014 May 7.
5
Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.
Science. 2000 Jun 16;288(5473):2028-31. doi: 10.1126/science.288.5473.2028.
6
Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0318.
7
Biogeochemical modelling of dissolved oxygen in a changing ocean.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0328.
8
Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190351. doi: 10.1098/rsta.2019.0351. Epub 2020 Aug 31.
9
Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2016.0325.
10
Warming up, turning sour, losing breath: ocean biogeochemistry under global change.
Philos Trans A Math Phys Eng Sci. 2011 May 28;369(1943):1980-96. doi: 10.1098/rsta.2011.0003.

引用本文的文献

1
In a sea of microbes, eddy events trigger diatom export in the Sargasso Sea.
ISME Commun. 2025 May 19;5(1):ycaf083. doi: 10.1093/ismeco/ycaf083. eCollection 2025 Jan.
3
Ocean ventilation and deoxygenation in a warming world: introduction and overview.
Philos Trans A Math Phys Eng Sci. 2017 Sep 13;375(2102). doi: 10.1098/rsta.2017.0240.

本文引用的文献

1
Carbon dioxide exchange of Alnus rubra : A mathematical model.
Oecologia. 1974 Dec;17(4):281-291. doi: 10.1007/BF00345747.
4
Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.
Nature. 2010 Jun 24;465(7301):1062-5. doi: 10.1038/nature09170.
5
The impact of climate change on the world's marine ecosystems.
Science. 2010 Jun 18;328(5985):1523-8. doi: 10.1126/science.1189930.
6
Changes in biogenic carbon flow in response to sea surface warming.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7067-72. doi: 10.1073/pnas.0812743106. Epub 2009 Apr 9.
7
Net production of oxygen in the subtropical ocean.
Nature. 2008 Jan 17;451(7176):323-5. doi: 10.1038/nature06441.
8
The dynamics of the oceanic subtropical gyres.
Science. 1990 Apr 20;248(4953):316-22. doi: 10.1126/science.248.4953.316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验