Centre for Science at Extreme Conditions, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9003-9008. doi: 10.1073/pnas.1706244114. Epub 2017 Aug 7.
The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (HO)(NH), is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O([Formula: see text]), where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.
天王星和海王星等巨行星的内部结构,以及新发现的系外行星的内部结构都比较松散,因为有限的观测数据可以满足各种内部模型。尽管已知它们的地幔由大量的水、氨和甲烷冰组成,但这些冰在行星内部是如何组织的,是均匀混合的,还是存在连续的浓度梯度,或者是具有特定成分的分离层,仍不清楚。虽然在压力下已经对个别冰进行了详细研究,但对它们混合物的性质的研究要少得多。我们在这里使用第一性原理计算表明,由于显著的结构演化,2:1 的氨水合物(HO)(NH)在冰态行星地幔条件下稳定存在。在 65 GPa 以上,我们预测它将从氢键分子固体转变为完全离子相 O([Formula: see text]),其中所有水分子都完全去质子化,这是以前从未见过的一种意外的键合现象。氨一水合半水合物在一系列离子相中稳定存在,直到 500 GPa,这是在类似于海王星的行星内部深处发现的压力,因此在比任何其他氨-水混合物更高的压力下稳定存在。这表明它在足够高的压力下从任何氨-水混合物中沉淀出来,因此形成了冰态行星的重要组成部分。