Soderlund K M, Stanley S
Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA.
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD, USA.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190479. doi: 10.1098/rsta.2019.0479. Epub 2020 Nov 9.
The flybys of Uranus and Neptune revealed the first multipolar planetary magnetic fields and highlighted how much we have yet to learn about ice giant planets. In this review, we summarize observations of Uranus' and Neptune's magnetic fields and place them in the context of other planetary dynamos. The ingredients for dynamo action in general, and for the ice giants in particular, are discussed, as are the factors thought to control magnetic field strength and morphology. These ideas are then applied to Uranus and Neptune, where we show that no models are yet able to fully explain their observed magnetic fields. We then propose future directions for missions, modelling, experiments and theory necessary to answer outstanding questions about the dynamos of ice giant planets, both within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
对天王星和海王星的飞越探测揭示了首个多极行星磁场,并凸显出我们对冰巨行星还有多少未知有待探索。在这篇综述中,我们总结了对天王星和海王星磁场的观测,并将其置于其他行星发电机的背景下进行考量。我们讨论了一般情况下发电机作用的要素,特别是冰巨行星的要素,以及被认为控制磁场强度和形态的因素。然后,这些观点被应用于天王星和海王星,我们发现目前还没有模型能够完全解释它们观测到的磁场。接着,我们提出了未来任务、建模、实验和理论的方向,这些对于解答太阳系内外冰巨行星发电机的悬而未决的问题都是必要的。本文是“冰巨行星系统的未来探索”讨论会议文集的一部分。