Suppr超能文献

视蛋白介导的嗜盐古菌中细菌红素合成的抑制作用

Opsin-Mediated Inhibition of Bacterioruberin Synthesis in Halophilic Archaea.

作者信息

Peck Ronald F, Pleşa Alexandru M, Graham Serena M, Angelini David R, Shaw Emily L

机构信息

Department of Biology, Colby College, Waterville, Maine, USA

Department of Biology, Colby College, Waterville, Maine, USA.

出版信息

J Bacteriol. 2017 Oct 3;199(21). doi: 10.1128/JB.00303-17. Print 2017 Nov 1.

Abstract

Halophilic archaea often inhabit environments with limited oxygen, and many produce ion-pumping rhodopsin complexes that allow them to maintain electrochemical gradients when aerobic respiration is inhibited. Rhodopsins require a protein, an opsin, and an organic cofactor, retinal. We previously demonstrated that in , bacterioopsin (BO), when not bound by retinal, inhibits the production of bacterioruberin, a biochemical pathway that shares intermediates with retinal biosynthesis. In this work, we used heterologous expression in a related halophilic archaeon, , to demonstrate that BO is sufficient to inhibit bacterioruberin synthesis catalyzed by the lycopene elongase (Lye) enzyme. This inhibition was observed both in liquid culture and in a novel colorimetric assay to quantify bacterioruberin abundance based on the colony color. Addition of retinal to convert BO to the bacteriorhodopsin complex resulted in a partial rescue of bacterioruberin production. To explore if this regulatory mechanism occurs in other organisms, we expressed a Lye homolog and an opsin from in cruxopsin-3 expression inhibited bacterioruberin synthesis catalyzed by Lye but had no effect when bacterioruberin synthesis was catalyzed by or Lye. Conversely, BO did not inhibit Lye activity. Together, our data suggest that opsin-mediated inhibition of Lye is potentially widespread and represents an elegant regulatory mechanism that allows organisms to efficiently utilize ion-pumping rhodopsins obtained through lateral gene transfer. Many enzymes are complexes of proteins and nonprotein organic molecules called cofactors. To ensure efficient formation of functional complexes, organisms must regulate the production of proteins and cofactors. To study this regulation, we used bacteriorhodopsin from the archaeon Bacteriorhodopsin consists of the bacterioopsin protein and a retinal cofactor. In this article, we further characterize a novel regulatory mechanism in which bacterioopsin promotes retinal production by inhibiting a reaction that consumes lycopene, a retinal precursor. By expressing genes in a different organism, , we demonstrated that bacterioopsin alone is sufficient for this inhibition. We also found that an opsin from has inhibitory activity, suggesting that this regulatory mechanism might be found in other organisms.

摘要

嗜盐古菌常常栖息于氧气有限的环境中,许多嗜盐古菌会产生离子泵视紫红质复合物,使得它们在有氧呼吸受到抑制时能够维持电化学梯度。视紫红质需要一种蛋白质、一种视蛋白和一种有机辅因子——视黄醛。我们之前证明,在[具体生物名称未给出]中,细菌视蛋白(BO)在未与视黄醛结合时,会抑制细菌红素的产生,细菌红素的生物合成途径与视黄醛生物合成共用中间产物。在这项研究中,我们利用在一种相关嗜盐古菌[具体生物名称未给出]中的异源表达,证明BO足以抑制由[具体生物名称未给出]的番茄红素延长酶(Lye)催化的细菌红素合成。这种抑制在液体培养以及一种基于菌落颜色来量化细菌红素丰度的新型比色测定中均被观察到。添加视黄醛将BO转化为细菌视紫红质复合物导致细菌红素产生部分恢复。为了探究这种调控机制是否在其他生物体中发生,我们在[具体生物名称未给出]中表达了来自[具体生物名称未给出]的Lye同源物和一种视蛋白,cruxopsin - 3的表达抑制了由[具体生物名称未给出]的Lye催化的细菌红素合成,但在由[具体生物名称未给出]或[具体生物名称未给出]的Lye催化细菌红素合成时没有影响。相反,[具体生物名称未给出]的BO并不抑制[具体生物名称未给出]的Lye活性。总之,我们的数据表明视蛋白介导的对Lye的抑制可能广泛存在,并且代表了一种精妙的调控机制,使生物体能够有效利用通过水平基因转移获得的离子泵视紫红质。许多酶是蛋白质与称为辅因子的非蛋白质有机分子的复合物。为确保功能性复合物的高效形成,生物体必须调控蛋白质和辅因子的产生。为了研究这种调控,我们使用了来自古菌[具体生物名称未给出]的细菌视紫红质。细菌视紫红质由细菌视蛋白和视黄醛辅因子组成。在本文中,我们进一步表征了一种新型调控机制,其中细菌视蛋白通过抑制消耗番茄红素(一种视黄醛前体)的反应来促进视黄醛的产生。通过在不同生物体[具体生物名称未给出]中表达[具体生物名称未给出]的基因,我们证明仅细菌视蛋白就足以产生这种抑制作用。我们还发现来自[具体生物名称未给出]的一种视蛋白具有抑制活性,这表明这种调控机制可能在其他生物体中也存在。

相似文献

1
Opsin-Mediated Inhibition of Bacterioruberin Synthesis in Halophilic Archaea.
J Bacteriol. 2017 Oct 3;199(21). doi: 10.1128/JB.00303-17. Print 2017 Nov 1.
2
Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis.
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00576-18. Print 2019 Jan 15.
3
Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum.
J Bacteriol. 2011 Oct;193(20):5658-67. doi: 10.1128/JB.05376-11. Epub 2011 Aug 12.
10
brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum.
J Biol Chem. 2001 Feb 23;276(8):5739-44. doi: 10.1074/jbc.M009492200. Epub 2000 Nov 22.

引用本文的文献

1
Genomic re-sequencing reveals mutational divergence across genetically engineered strains of model archaea.
mSystems. 2025 Feb 18;10(2):e0108424. doi: 10.1128/msystems.01084-24. Epub 2025 Jan 10.
2
Cellular differentiation into hyphae and spores in halophilic archaea.
Nat Commun. 2023 Apr 1;14(1):1827. doi: 10.1038/s41467-023-37389-w.
3
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential.
Mar Drugs. 2022 Aug 17;20(8):524. doi: 10.3390/md20080524.
4
Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in .
Front Microbiol. 2022 Jun 24;13:940865. doi: 10.3389/fmicb.2022.940865. eCollection 2022.
5
Carotenoids as a Protection Mechanism against Oxidative Stress in .
Antioxidants (Basel). 2020 Oct 29;9(11):1060. doi: 10.3390/antiox9111060.
6
Engineering as an Efficient Platform for High Level Production of Lycopene.
Front Microbiol. 2018 Nov 29;9:2893. doi: 10.3389/fmicb.2018.02893. eCollection 2018.
7
Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis.
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00576-18. Print 2019 Jan 15.

本文引用的文献

1
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.
Microbiol Mol Biol Rev. 2016 Sep 14;80(4):929-54. doi: 10.1128/MMBR.00003-16. Print 2016 Dec.
2
Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases.
Trends Biochem Sci. 2016 Apr;41(4):356-370. doi: 10.1016/j.tibs.2016.01.007. Epub 2016 Feb 24.
3
Ion-pumping microbial rhodopsins.
Front Mol Biosci. 2015 Sep 22;2:52. doi: 10.3389/fmolb.2015.00052. eCollection 2015.
4
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
7
Crystal structure of Cruxrhodopsin-3 from Haloarcula vallismortis.
PLoS One. 2014 Sep 30;9(9):e108362. doi: 10.1371/journal.pone.0108362. eCollection 2014.
8
Structure of a membrane-embedded prenyltransferase homologous to UBIAD1.
PLoS Biol. 2014 Jul 22;12(7):e1001911. doi: 10.1371/journal.pbio.1001911. eCollection 2014 Jul.
9
Structural insights into ubiquinone biosynthesis in membranes.
Science. 2014 Feb 21;343(6173):878-81. doi: 10.1126/science.1246774.
10
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验