Suppr超能文献

转录和翻译控制机制在大肠杆菌核糖体蛋白合成调控中的作用

Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

作者信息

Burgos Hector L, O'Connor Kevin, Sanchez-Vazquez Patricia, Gourse Richard L

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

出版信息

J Bacteriol. 2017 Oct 3;199(21). doi: 10.1128/JB.00407-17. Print 2017 Nov 1.

Abstract

Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In this work, we conclude that NTP and ppGpp concentrations can regulate synthesis of ribosomal proteins, but most of the effect of ppGpp is indirect as a consequence of translational feedback in response to changes in rRNA levels. Our results illustrate how effects of seemingly redundant regulatory mechanisms can be separated in time and that even when multiple mechanisms act concurrently their contributions are not necessarily equivalent.

摘要

细菌核糖体生物合成受到严格调控,以匹配营养状况并防止形成有缺陷的核糖体颗粒。在[具体情况未提及]中,大多数核糖体蛋白(r蛋白)的合成通过翻译反馈机制与rRNA合成协调:当r蛋白超过rRNA时,特定的r蛋白会结合到自身的mRNA上并抑制操纵子的表达。最近发现,直接调节rRNA启动子的第二信使核苷酸鸟苷四磷酸和五磷酸(ppGpp),也能够调节许多r蛋白启动子。为了研究翻译和转录控制机制对r蛋白合成调控的相对贡献,我们设计了一个报告系统,使我们能够从基因上分离负责这两种机制的顺式作用序列,并在相同条件下量化它们对调控的相对贡献。我们表明,在营养条件发生变化后,S20和S10操纵子的r蛋白合成受到ppGpp的调控,但ppGpp的大部分作用需要r蛋白mRNA的5'区域,该区域包含翻译反馈调控的靶位点,而不是启动子。这些结果表明,营养变化后ppGpp对S20和S10操纵子的大多数调控是间接的,并且是对rRNA合成变化的响应。相比之下,我们发现S20操纵子的启动子在生长过程中受到调控,可能是对核苷三磷酸(NTP)水平升高的响应。因此,r蛋白合成是动态的,不同的机制在不同的时间起作用。细菌细胞已经进化出复杂且看似冗余的策略来调控许多高能耗过程。在[具体情况未提及]中,核糖体成分的合成在转录和翻译步骤都通过作用于营养状况的机制进行严格调控。在这项工作中,我们得出结论,NTP和ppGpp浓度可以调节核糖体蛋白的合成,但ppGpp的大部分作用是间接的,这是翻译反馈响应rRNA水平变化的结果。我们的结果说明了看似冗余的调控机制的作用如何在时间上分离,并且即使多种机制同时起作用,它们的贡献也不一定相等。

相似文献

2
Regulation of Ribosomal Protein Operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the Transcriptional and Translational Levels.
J Bacteriol. 2016 Aug 25;198(18):2494-502. doi: 10.1128/JB.00187-16. Print 2016 Sep 15.
5
An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation.
EMBO J. 2004 Nov 10;23(22):4473-83. doi: 10.1038/sj.emboj.7600423. Epub 2004 Oct 21.
6
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7. doi: 10.1073/pnas.1019383108. Epub 2011 Mar 14.

引用本文的文献

3
(p)ppGpp and DksA play a crucial role in reducing the efficacy of β-lactam antibiotics by modulating bacterial membrane permeability.
Microbiol Spectr. 2025 Apr;13(4):e0116924. doi: 10.1128/spectrum.01169-24. Epub 2025 Feb 24.
5
RNase-mediated reprogramming of Yersinia virulence.
PLoS Pathog. 2024 Aug 19;20(8):e1011965. doi: 10.1371/journal.ppat.1011965. eCollection 2024 Aug.
6
Robust regulation of transcription pausing in  by the ubiquitous elongation factor NusG.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2221114120. doi: 10.1073/pnas.2221114120. Epub 2023 Jun 5.
8
Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges.
Microorganisms. 2021 Nov 14;9(11):2352. doi: 10.3390/microorganisms9112352.
9
Macromolecular assemblies supporting transcription-translation coupling.
Transcription. 2021 Aug;12(4):103-125. doi: 10.1080/21541264.2021.1981713. Epub 2021 Sep 27.
10
Transcriptomic analysis reveal differential gene expressions of Escherichia coli O157:H7 under ultrasonic stress.
Ultrason Sonochem. 2021 Mar;71:105418. doi: 10.1016/j.ultsonch.2020.105418. Epub 2020 Dec 7.

本文引用的文献

1
Regulation of Ribosomal Protein Operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the Transcriptional and Translational Levels.
J Bacteriol. 2016 Aug 25;198(18):2494-502. doi: 10.1128/JB.00187-16. Print 2016 Sep 15.
3
Recombineering: genetic engineering in bacteria using homologous recombination.
Curr Protoc Mol Biol. 2014 Apr 14;106:1.16.1-1.16.39. doi: 10.1002/0471142727.mb0116s106.
4
The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.
Mol Cell. 2013 May 9;50(3):420-9. doi: 10.1016/j.molcel.2013.03.021. Epub 2013 Apr 25.
5
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7. doi: 10.1073/pnas.1019383108. Epub 2011 Mar 14.
6
Stationary phase in gram-negative bacteria.
FEMS Microbiol Rev. 2010 Jul;34(4):476-95. doi: 10.1111/j.1574-6976.2010.00213.x. Epub 2010 Feb 6.
7
Allosteric control of Escherichia coli rRNA promoter complexes by DksA.
Genes Dev. 2009 Jan 15;23(2):236-48. doi: 10.1101/gad.1745409.
8
Analysis of RNA polymerase-promoter complex formation.
Methods. 2009 Jan;47(1):13-24. doi: 10.1016/j.ymeth.2008.10.018. Epub 2008 Oct 24.
9
(p)ppGpp: still magical?
Annu Rev Microbiol. 2008;62:35-51. doi: 10.1146/annurev.micro.62.081307.162903.
10
The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.
Mol Microbiol. 2008 Jun;68(5):1128-48. doi: 10.1111/j.1365-2958.2008.06229.x. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验