Suppr超能文献

微生物动态表型的基因组规模重建:成就与挑战

Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges.

作者信息

Panikov Nicolai S

机构信息

Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA.

出版信息

Microorganisms. 2021 Nov 14;9(11):2352. doi: 10.3390/microorganisms9112352.

Abstract

This review is a part of the SI 'Genome-Scale Modeling of Microorganisms in the Real World'. The goal of GEM is the accurate prediction of the phenotype from its respective genotype under specified environmental conditions. This review focuses on the dynamic phenotype; prediction of the real-life behaviors of microorganisms, such as cell proliferation, dormancy, and mortality; balanced and unbalanced growth; steady-state and transient processes; primary and secondary metabolism; stress responses; etc. Constraint-based metabolic reconstructions were successfully started two decades ago as FBA, followed by more advanced models, but this review starts from the earlier nongenomic predecessors to show that some GEMs inherited the outdated biokinetic frameworks compromising their performances. The most essential deficiencies are: (i) an inadequate account of environmental conditions, such as various degrees of nutrients limitation and other factors shaping phenotypes; (ii) a failure to simulate the adaptive changes of MMCC (MacroMolecular Cell Composition) in response to the fluctuating environment; (iii) the misinterpretation of the SGR (Specific Growth Rate) as either a fixed constant parameter of the model or independent factor affecting the conditional expression of macromolecules; (iv) neglecting stress resistance as an important objective function; and (v) inefficient experimental verification of GEM against simple growth (constant MMCC and SGR) data. Finally, we propose several ways to improve GEMs, such as replacing the outdated Monod equation with the SCM (Synthetic Chemostat Model) that establishes the quantitative relationships between primary and secondary metabolism, growth rate and stress resistance, process kinetics, and cell composition.

摘要

本综述是“现实世界中微生物的基因组规模建模”专题系列的一部分。基因组规模模型(GEM)的目标是在特定环境条件下根据相应的基因型准确预测表型。本综述聚焦于动态表型;预测微生物的实际行为,如细胞增殖、休眠和死亡;平衡和不平衡生长;稳态和瞬态过程;初级和次级代谢;应激反应等。基于约束的代谢重建在二十年前作为通量平衡分析(FBA)成功启动,随后出现了更先进的模型,但本综述从早期的非基因组前身开始,以表明一些GEM继承了过时的生物动力学框架,从而影响了它们的性能。最主要的缺陷包括:(i)对环境条件的考虑不足,如不同程度的营养限制和其他塑造表型的因素;(ii)未能模拟大分子细胞组成(MMCC)对波动环境的适应性变化;(iii)将比生长速率(SGR)错误地解释为模型的固定常数参数或影响大分子条件表达的独立因素;(iv)忽视抗逆性作为一个重要的目标函数;以及(v)针对简单生长(恒定的MMCC和SGR)数据对GEM进行的实验验证效率低下。最后,我们提出了几种改进GEM的方法,例如用合成恒化器模型(SCM)取代过时的莫诺德方程,该模型建立了初级和次级代谢、生长速率和抗逆性、过程动力学以及细胞组成之间的定量关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1432/8621822/d758c2f3ca7b/microorganisms-09-02352-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验