Suppr超能文献

基于[F]FDG PET/CT 的代谢肿瘤负荷可改善肺癌患者的 TNM 分期。

Metabolic tumor burden quantified on [F]FDG PET/CT improves TNM staging of lung cancer patients.

机构信息

Nuclear Medicine Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.

Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

出版信息

Eur J Nucl Med Mol Imaging. 2017 Dec;44(13):2169-2178. doi: 10.1007/s00259-017-3789-y. Epub 2017 Aug 7.

Abstract

PURPOSE

The purpose of our study was to test a new staging algorithm, combining clinical TNM staging (cTNM) with whole-body metabolic active tumor volume (MATV-WB), with the goal of improving prognostic ability and stratification power.

METHODS

Initial staging [F]FDG PET/CT of 278 non-small cell lung cancer (NSCLC) patients, performed between January/2011 and April/2016, 74(26.6%) women, 204(73.4%) men; aged 34-88 years (mean ± SD:66 ± 10), was retrospectively evaluated, and MATV-WB was quantified. Each patient's follow-up time was recorded: 0.7-83.6 months (mean ± SD:25.1 ± 20.3).

RESULTS

MATV-WB was an independent and statistically-significant predictor of overall survival (p < 0.001). The overall survival predictive ability of MATV-WB (C index: mean ± SD = 0.7071 ± 0.0009) was not worse than cTNM (C index: mean ± SD = 0.7031 ± 0.007) (Z = -0.143, p = 0.773). Estimated mean survival times of 56.3 ± 3.0 (95%CI:50.40-62.23) and 21.7 ± 2.2 months (95%CI:17.34-25.98) (Log-Rank = 77.48, p < 0.001), one-year survival rate of 86.8% and of 52.8%, and five-year survival rate of 53.6% and no survivors, were determined, respectively, for patients with MATV-WB < 49.5 and MATV-WB ≥ 49.5. Patients with MATV-WB ≥ 49.5 had a mortality risk 2.9-5.8 times higher than those with MATV-WB < 49.5 (HR = 4.12, p < 0.001). MATV-WB cutoff points were also determined for each cTNM stage: 23.7(I), 49.5(II), 52(III), 48.8(IV) (p = 0.029, p = 0.227, p = 0.025 and p = 0.001, respectively). At stages I, III and IV there was a statistically-significant difference in the estimated mean overall survival time between groups of patients defined by the cutoff points (p = 0.007, p = 0.004 and p < 0.001, respectively). At stage II (p = 0.365), there was a clinically-significant difference of about 12 months between the groups. In all cTNM stages, patients with MATV-WB ≥ cutoff points had lower survival rates. Combined clinical TNM-PET staging (cTNM-P) was then tested: Stage I < 23.7; Stage I ≥ 23.7; Stage II < 49.5; Stage II ≥ 49.5; Stage III < 52; Stage III ≥ 52; Stage IV < 48.8; Stage IV ≥ 48.8. cTNM-P staging presented a superior overall survival predictive ability (C index = 0.730) compared with conventional cTNM staging (C index = 0.699) (Z = -4.49, p < 0.001).

CONCLUSION

cTNM-P staging has superior prognostic value compared with conventional cTNM staging, and allows better stratification of NSCLC patients.

摘要

目的

我们的研究目的是测试一种新的分期算法,将临床 TNM 分期(cTNM)与全身代谢活跃肿瘤体积(MATV-WB)相结合,以提高预后能力和分层能力。

方法

回顾性评估了 278 例非小细胞肺癌(NSCLC)患者的初始分期[F]FDG PET/CT,这些患者于 2011 年 1 月至 2016 年 4 月之间进行了检查,其中 74 例为女性(26.6%),204 例为男性(73.4%);年龄 34-88 岁(平均±SD:66±10)。记录了每位患者的随访时间:0.7-83.6 个月(平均±SD:25.1±20.3)。

结果

MATV-WB 是总生存期的独立且具有统计学意义的预测因子(p<0.001)。MATV-WB 的总生存期预测能力(C 指数:均值±SD=0.7071±0.0009)并不逊于 cTNM(C 指数:均值±SD=0.7031±0.007)(Z=-0.143,p=0.773)。估计的 56.3±3.0 个月(95%CI:50.40-62.23)和 21.7±2.2 个月(95%CI:17.34-25.98)的平均生存时间(对数秩=77.48,p<0.001),1 年生存率分别为 86.8%和 52.8%,5 年生存率分别为 53.6%和无幸存者,分别为 MATV-WB<49.5 和 MATV-WB≥49.5 的患者。MATV-WB≥49.5 的患者的死亡率是 MATV-WB<49.5 的患者的 2.9-5.8 倍(HR=4.12,p<0.001)。还为每个 cTNM 分期确定了 MATV-WB 的截断点:23.7(I)、49.5(II)、52(III)、48.8(IV)(p=0.029、p=0.227、p=0.025 和 p=0.001)。在 I、III 和 IV 期,根据截断值定义的患者组之间在估计的总生存时间方面存在统计学显著差异(p=0.007、p=0.004 和 p<0.001)。在 II 期(p=0.365),两组之间存在约 12 个月的临床显著差异。在所有 cTNM 分期中,MATV-WB≥截断值的患者的生存率较低。然后测试了联合临床 TNM-PET 分期(cTNM-P):I 期<23.7;I 期≥23.7;II 期<49.5;II 期≥49.5;III 期<52;III 期≥52;IV 期<48.8;IV 期≥48.8。与常规 cTNM 分期(C 指数=0.699)相比,cTNM-P 分期具有更高的总生存期预测能力(C 指数=0.730)(Z=-4.49,p<0.001)。

结论

与常规 cTNM 分期相比,cTNM-P 分期具有更高的预后价值,并能更好地分层 NSCLC 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验