Suppr超能文献

代谢肿瘤负荷 18F-FDG PET 在非手术治疗的非小细胞肺癌患者中的预后价值。

Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer.

机构信息

Department of Radiology, University of Chicago, Chicago, IL 60637, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2012 Jan;39(1):27-38. doi: 10.1007/s00259-011-1934-6. Epub 2011 Sep 23.

Abstract

PURPOSE

The objective of this study was to assess the prognostic value of metabolic tumor burden on 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) positron emission tomography (PET)/CT measured with metabolic tumor volume (MTV) and total lesion glycolysis (TLG), independent of Union Internationale Contra la Cancrum (UICC)/American Joint Committee on Cancer (AJCC) tumor, node, and metastasis (TNM) stage, in comparison with that of standardized uptake value (SUV) in nonsurgical patients with non-small cell lung cancer (NSCLC).

METHODS

This study retrospectively reviewed 169 consecutive nonsurgical patients (78 men, 91 women, median age of 68 years) with newly diagnosed NSCLC who had pretreatment (18)F-FDG PET/CT scans. The (18)F-FDG PET/CT scans were performed in accordance with National Cancer Institute guidelines. The MTV of whole-body tumor (MTV(WB)), of primary tumor (MTV(T)), of nodal metastases (MTV(N)), and of distant metastases (MTV(M)); the TLG of whole-body tumor (TLG(WB)), of primary tumor (TLG(T)), of nodal metastases (TLG(N)), and of distant metastases (TLG(M)); the SUV(max) of whole-body tumor (SUV(maxWB)), of primary tumor (SUV(maxT)), of nodal metastases (SUV(maxN)), and of distant metastases (SUV(maxM)) as well as the SUV(mean) of whole-body tumor (SUV(meanWB)), of primary tumor (SUV(meanT)), of nodal metastases (SUV(meanN)), and of distant metastases (SUV(meanM)) were measured with the PETedge tool on a MIMvista workstation with manual adjustment. The median follow-up among survivors was 35 months from the PET/CT (range 2-82 months). Statistical methods included Kaplan-Meier curves, Cox regression, and C-statistics.

RESULTS

There were a total of 139 deaths during follow-up. Median overall survival (OS) was 10.9 months [95% confidence interval (CI) 9.0-13.2 months]. The MTV was statistically associated with OS. The hazard ratios (HR) for 1 unit increase of ln(MTV(WB)), √(MTV(T)), √(MTV(N)), and √(MTV(M)) before/after adjusting for stage were: 1.47/1.43 (p < 0.001/<0.001), 1.06/1.05 (p < 0.001/<0.001), 1.11/1.10 (p < 0.001/<0.001), and 1.04/1.03 (p = 0.007/0.043), respectively. TLG had statistically significant associations with OS with the HRs for 1 unit increase in ln(TLG(WB)), √(TLG(T)), √(TLG(N)), and √(TLG(M)) before/after adjusting for stage being 1.36/1.33 (p < 0.001/<0.001), 1.02/1.02 (p = 0.001/0.002), 1.05/1.04 (p < 0.001/<0.001), and 1.02/1.02 (p = 0.003/0.024), respectively. The ln(SUV(maxWB)) and √(SUV(maxN)) were statistically associated with OS with the corresponding HRs for a 1 unit increase before/after adjusting for stage being 1.46/1.43 (p = 0.013/0.024) and 1.22/1.16 (p = 0.002/0.040). The √(SUV(meanN)) was statistically associated with OS before and after adjusting for stage with HRs for a 1 unit increase of 1.32 (p < 0.001) and 1.24 (p = 0.015), respectively. The √(SUV(meanM)) and √(SUV(maxM)) were statistically associated with OS before adjusting for stage with HRs for a 1 unit increase of 1.26 (p = 0.017) and 1.18 (p = 0.007), respectively, but not after adjusting for stage (p = 0.127 and 0.056). There was no statistically significant association between OS and √(SUV(maxT)), ln(SUV(meanWB)), or √(SUV(meanT)). There was low interobserver variability among three radiologists with intraclass correlation coefficients (ICC) greater than 0.94 for SUV(maxWB), ln(MTV(WB)), and ln(TLG(WB)). Interobserver variability was higher for SUV(meanWB) with an ICC of 0.806.

CONCLUSION

Baseline metabolic tumor burdens at the level of whole-body tumor, primary tumor, nodal metastasis, and distant metastasis as measured with MTV and TLG on FDG PET are prognostic measures independent of clinical stage with low inter-observer variability and may be used to further stratify nonsurgical patients with NSCLC. This study also suggests MTV and TLG are better prognostic measures than SUV(max) and SUV(mean). These results will need to be validated in larger cohorts in a prospective study.

摘要

目的

本研究旨在评估代谢肿瘤体积(MTV)和总肿瘤糖酵解(TLG)测量的代谢肿瘤负荷(基于 2-脱氧-2-[(18)F]氟-D-葡萄糖((18)F-FDG)正电子发射断层扫描(PET)/CT)在非手术治疗的非小细胞肺癌(NSCLC)患者中的预后价值,与 SUV 相比,独立于国际抗癌联盟(UICC)/美国癌症联合委员会(AJCC)肿瘤、淋巴结和转移(TNM)分期,结果为非手术患者。

方法

本研究回顾性分析了 169 例新诊断为 NSCLC 的非手术患者(78 名男性,91 名女性,中位年龄 68 岁),这些患者在治疗前进行了(18)F-FDG PET/CT 扫描。(18)F-FDG PET/CT 扫描符合国家癌症研究所的指南。全身肿瘤 MTV(MTV(WB))、原发性肿瘤 MTV(MTV(T))、淋巴结转移 MTV(MTV(N))和远处转移 MTV(MTV(M));全身肿瘤 TLG(TLG(WB))、原发性肿瘤 TLG(TLG(T))、淋巴结转移 TLG(TLG(N))和远处转移 TLG(TLG(M));全身肿瘤 SUV(max)(SUV(maxWB))、原发性肿瘤 SUV(max)(SUV(maxT))、淋巴结转移 SUV(max)(SUV(maxN))和远处转移 SUV(max)(SUV(maxM))以及全身肿瘤 SUV(mean)(SUV(meanWB))、原发性肿瘤 SUV(mean)(SUV(meanT))、淋巴结转移 SUV(mean)(SUV(meanN))和远处转移 SUV(mean)(SUV(meanM))均使用 MIMvista 工作站上的 PETedge 工具进行测量,并进行手动调整。在幸存者中,中位随访时间为 PET/CT 后 35 个月(范围 2-82 个月)。统计方法包括 Kaplan-Meier 曲线、Cox 回归和 C 统计量。

结果

在随访期间共有 139 例死亡。中位总生存期(OS)为 10.9 个月[95%置信区间(CI)9.0-13.2 个月]。MTV 与 OS 有统计学关联。ln(MTV(WB))、√(MTV(T))、√(MTV(N))和√(MTV(M))的 HR 分别为 1.47/1.43(p<0.001/<0.001)、1.06/1.05(p<0.001/<0.001)、1.11/1.10(p<0.001/<0.001)和 1.04/1.03(p=0.007/0.043)。TLG 与 OS 有统计学显著相关性,ln(TLG(WB))、√(TLG(T))、√(TLG(N))和√(TLG(M))的 HR 分别为 1.36/1.33(p<0.001/<0.001)、1.02/1.02(p=0.001/0.002)、1.05/1.04(p<0.001/<0.001)和 1.02/1.02(p=0.003/0.024)。ln(SUV(maxWB))和√(SUV(maxN))与 OS 有统计学相关性,调整分期后,相应的 HR 分别为 1.46/1.43(p=0.013/0.024)和 1.22/1.16(p=0.002/0.040)。调整分期后,√(SUV(meanN))与 OS 有统计学相关性,HR 为 1.32(p<0.001)。调整分期前,√(SUV(meanM))和√(SUV(maxM))与 OS 有统计学相关性,HR 分别为 1.26(p=0.017)和 1.18(p=0.007),但调整分期后无统计学相关性(p=0.127 和 0.056)。OS 与√(SUV(maxT))、ln(SUV(meanWB))或√(SUV(meanT))无统计学显著相关性。三位放射科医生之间的观察者间变异性较低,SUV(maxWB)、ln(MTV(WB))和 ln(TLG(WB))的 ICC 大于 0.94。SUV(meanWB)的 ICC 为 0.806,观察者间变异性较高。

结论

基于 FDG PET 的全身肿瘤、原发性肿瘤、淋巴结转移和远处转移的 MTV 和 TLG 测量的基线代谢肿瘤负担是独立于临床分期的预后指标,具有较低的观察者间变异性,可能用于进一步分层非手术治疗的 NSCLC 患者。本研究还表明,MTV 和 TLG 是比 SUV(max)和 SUV(mean)更好的预后指标。这些结果需要在更大的队列中前瞻性研究中验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验