Suppr超能文献

基于正交频分复用(OFDM)的可见光通信中多波段光学相干断层扫描(OCT)预编码的实验研究

Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications.

作者信息

Hong Yang, Xu Jing, Chen Lian-Kuan

出版信息

Opt Express. 2017 May 29;25(11):12908-12914. doi: 10.1364/OE.25.012908.

Abstract

In this paper, we propose and experimentally demonstrate a channel-independent multi-band orthogonal circulant matrix transform (MB-OCT) precoding, to efficiently combat the severe frequency-selective fading of visible light communications (VLC). The proposed MB-OCT precoding exhibits an attractive ladder-like signal-to-noise-ratio (SNR) profile, thus can significantly reduce system BER by applying different quadrature amplitude modulation (QAM) level to different sub-bands. The impacts of sub-band number, signal bandwidth, and length of cyclic prefix (CP) on bit error rate (BER) of the VLC system are investigated. We experimentally compare BER performance of the proposed MB-OCT precoding with that of the conventional MB discrete Fourier transform (MB-DFT) precoding and the adaptive-loaded discrete multitone (DMT). The results show that the MB-OCT precoding outperforms the MB-DFT precoding and the single-band case for different data rates. Furthermore, it exhibits reduced implementation complexity and comparable BER performance with the adaptive-loaded DMT. For ~700-Mb/s VLC system with 2-m transmission distance, the BER is reduced from 1.53 × 10 to 1.17 × 10 by using the proposed MB-OCT precoding.

摘要

在本文中,我们提出并通过实验证明了一种与信道无关的多频段正交循环矩阵变换(MB-OCT)预编码,以有效对抗可见光通信(VLC)中严重的频率选择性衰落。所提出的MB-OCT预编码呈现出吸引人的阶梯状信噪比(SNR)分布,因此通过对不同子频段应用不同的正交幅度调制(QAM)电平,可以显著降低系统误码率(BER)。研究了子频段数量、信号带宽和循环前缀(CP)长度对VLC系统误码率(BER)的影响。我们通过实验比较了所提出的MB-OCT预编码与传统的MB离散傅里叶变换(MB-DFT)预编码和自适应加载离散多音(DMT)的误码率性能。结果表明,对于不同的数据速率,MB-OCT预编码优于MB-DFT预编码和单频段情况。此外,它具有降低的实现复杂度,并且与自适应加载DMT具有可比的误码率性能。对于传输距离为2米的约700-Mb/s VLC系统,通过使用所提出的MB-OCT预编码,误码率从1.53×10降低到1.17×10。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验