Gric Tatjana, Hess Ortwin
Opt Express. 2017 May 15;25(10):11466-11476. doi: 10.1364/OE.25.011466.
Despite the fact that metal is the most common conducting constituent element in the fabrication of metamaterials, one of the advantages of graphene over metal is that its conductivity can be controlled by the Fermi energy. Here, we theoretically investigate multilayer structures comprising alternating graphene and dielectric layers as a class of hyperbolic metamaterials for THz frequencies based on a general simple model of the graphene and the dielectric layers. By employing a method of matching the tangential components of the electrical and magnetic fields, we derive the relevant dispersion relations and demonstrate that tuning can be achieved by modifying the Fermi energy. Moreover, tunability of the graphene-dielectric heterostructures can be enhanced further by changing either the thickness of the dielectric layers or the number of graphene sheets employed. Calculated dispersion relations, propagation lengths of plasmon modes in the system are presented. This allows us to characterize and categorize the modes into two groups: Ferrel-Berreman modes and surface plasmon polaritons.
尽管金属是超材料制造中最常见的导电组成元素,但石墨烯相对于金属的优势之一在于其电导率可由费米能控制。在此,我们基于石墨烯和电介质层的一般简单模型,从理论上研究由交替的石墨烯层和电介质层组成的多层结构,作为一类太赫兹频率的双曲线型超材料。通过采用匹配电场和磁场切向分量的方法,我们推导出相关的色散关系,并证明可通过改变费米能来实现调谐。此外,通过改变电介质层的厚度或所采用的石墨烯层数,可进一步提高石墨烯 - 电介质异质结构的可调谐性。文中给出了计算得到的色散关系以及系统中等离激元模式的传播长度。这使我们能够将这些模式表征并分类为两组:费雷尔 - 贝里曼模式和表面等离激元极化激元。