Suppr超能文献

扩散限制二元胶体系统中的格子动物。

Lattice animals in diffusion limited binary colloidal system.

机构信息

Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

出版信息

J Chem Phys. 2017 Aug 7;147(5):054904. doi: 10.1063/1.4996739.

Abstract

In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

摘要

在软物质系统中,控制非晶态材料的结构一直是一个关键挑战。在这项工作中,我们对二元胶体的不可逆扩散限制团簇聚集进行了建模,这是化学凝胶的一个模型。二元胶体粒子的不可逆聚集导致一种或两种物质的连通团簇的形成,也称为双凝胶。在形成连通团簇之前,系统形成由分形维数定义的自相似结构。对于单组分系统,当体积分数非常小时,团簇彼此相距很远,系统的分形维数为 1.8。与此相反,我们将表明,对于二元系统,我们观察到存在晶格动物,其分形维数为 2,而与体积分数无关。当团簇开始相互渗透时,我们观察到分形维数为 2.5,与单组分系统相同。我们还能够使用简单的不等式关系来预测双凝胶的形成。我们还表明,团簇的生长遵循 Smoluchowski 为扩散限制团簇聚集提出的动力学方程。我们还将表明,在絮凝聚集状态下,团簇的化学距离将遵循与晶格动物预测相同的标度律。此外,我们还将表明,不可逆二元聚集属于渗流理论的普遍性类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验