Tabatabaei Mohammadali, Wallace Gregory Q, Caetano Fabiana A, Gillies Elizabeth R, Ferguson Stephen S G, Lagugné-Labarthet François
Department of Chemistry and Center for Advanced Materials and Biomaterials , University of Western Ontario , London , ON , Canada N6A 5B7 . Email:
J. Allyn Taylor Centre for Cell Biology , Robarts Research Institute , Department of Physiology and Pharmacology , University of Western Ontario , 100 Perth Drive St. , London , ON , Canada N6A 5K8.
Chem Sci. 2016 Jan 1;7(1):575-582. doi: 10.1039/c5sc03332b. Epub 2015 Oct 16.
The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (CF) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.
分子等离子体激元学的兴起及其在超灵敏光谱测量中的应用得益于多种金属纳米结构的合理设计与制造。先进的纳米和微制造方法是此类结构发展的关键,它能使人们在亚波长尺度上调控光场,从而优化超灵敏检测的激发条件。在这项工作中,通过涉及在由纳米球光刻(NSL)制造的等离子体平台上对碳氟化合物(FC)聚合物(CF)薄膜进行图案化的纳米制造方法,实现了对等离子体平台上分析物和细胞定位的控制。这为使用等离子体介导的表面增强光谱技术探测细胞附近的目标生物分子提供了可能性。在此背景下,我们通过表面增强拉曼光谱(SERS)在这些用4 - 巯基苯硼酸(4 - MPBA)作为拉曼报告分子功能化的等离子体平台上,展示了不同细胞系中聚糖表达的表面增强生物传感。这些细胞系包括人胚肾(HEK 293)、C2C12小鼠成肌细胞和HeLa(海瑞塔·拉克斯)宫颈癌细胞。通过共聚焦SERS映射观察到,与其他细胞系相比,癌细胞具有明显不同的聚糖表达。这表明这些多功能SERS平台在区分癌细胞与非癌细胞方面具有潜在应用价值。