Ma Xiao, Tang Peng, Liu Dong, Zhang Jingquan, Feng Lianghuan, Wu Lili
Institute of Solar Energy Materials and Devices, College of Materials Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610064, China.
Chemphyschem. 2017 Oct 19;18(20):2939-2946. doi: 10.1002/cphc.201700536. Epub 2017 Aug 29.
For high-efficiency perovskite solar cells (PSCs), interface engineering becomes critical for carrier collection from the active perovskite material to the transport layer. To enhance the power conversion efficiency (PCE), herein we demonstrate a novel method named surface plasma treatment on a mesoporous TiO electron-transport layer (ETL) to improve electron extraction and transport properties at the perovskite/TiO interface. According to the XPS results, the plasma treatment induced a partial reduction of Ti to Ti within the TiO lattice and increased the concentration of oxygen vacancies on the TiO surface. Ultraviolet photoelectron spectra (UPS) show that the Fermi level of TiO upshifts about 0.2 eV which may effectively promote carrier separation and transfer at the perovskite/TiO interface. In addition, these created donor levels of Ti and oxygen vacancies donate extra electrons, increasing the conductivities of TiO films and which could further promote transport. The time-resolved photoluminescence spectra (TRPL) confirm that the decay time decreases dramatically from 656 ns to 235 ns after 90 s plasma treatment, which indicates a more efficient electron-transfer process. Based on all the above-mentioned results, a remarkable enhancement in cell efficiency was obtained, such that the average efficiency was improved from 11.5 % to 14.3 % under AM 1.5G irradiation (100 mW cm ).
对于高效钙钛矿太阳能电池(PSC)而言,界面工程对于载流子从活性钙钛矿材料收集到传输层至关重要。为了提高功率转换效率(PCE),在此我们展示了一种名为表面等离子体处理的新方法,用于介孔TiO电子传输层(ETL),以改善钙钛矿/TiO界面处的电子提取和传输特性。根据XPS结果,等离子体处理导致TiO晶格内的Ti部分还原为Ti,并增加了TiO表面的氧空位浓度。紫外光电子能谱(UPS)表明,TiO的费米能级上移约0.2 eV,这可能有效地促进钙钛矿/TiO界面处的载流子分离和转移。此外,这些产生的Ti施主能级和氧空位提供额外的电子,增加了TiO薄膜的电导率,进而可进一步促进传输。时间分辨光致发光光谱(TRPL)证实,经过90 s等离子体处理后,衰减时间从656 ns显著降低至235 ns,这表明电子转移过程更高效。基于上述所有结果,电池效率得到了显著提高,在AM 1.5G光照(100 mW cm)下,平均效率从11.5%提高到了14.3%。