Centro de Investigación, Innovación y Desarrollo de Materiales-CIDEMAT, Facultad de Ingeniería and ‡Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia UdeA , Calle 70 No. 52-21, Medellín 050010, Colombia.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):29654-29659. doi: 10.1021/acsami.7b06343. Epub 2017 Aug 24.
Optimization of the interface between the electron transport layer (ETL) and the hybrid perovskite is crucial to achieve high-performance perovskite solar cell (PSC) devices. Fullerene-based compounds have attracted attention as modifiers on the surface properties of TiO, the archetypal ETL in regular n-i-p PSCs. However, the partial solubility of fullerenes in the aprotic solvents used for perovskite deposition hinders its application to low-temperature solution-processed PSCs. In this work, we introduce a new method for fullerene modification of TiO layers derived from nanoparticles (NPs) inks. Atomic force microscopy characterization reveals that the resulting ETL is a network of TiO-NPs interconnected by fullerenes. Interestingly, this surface modification enhances the bottom interface of the perovskite by improving the charge transfer as well as the top perovskite interface by reducing surface trap states enhancing the contact with the p-type buffer layer. As a result, rigid PSCs reached a 17.2% power conversion efficiency (PCE), while flexible PSCs exhibited a remarkable stabilized PCE of 12.2% demonstrating the potential application of this approach for further scale-up of PSC devices.
优化电子传输层(ETL)与杂化钙钛矿之间的界面对于实现高性能钙钛矿太阳能电池(PSC)器件至关重要。富勒烯基化合物作为典型的 n-i-p PSCs 中 TiO2 的 ETL 的表面性质调节剂引起了人们的关注。然而,富勒烯在用于钙钛矿沉积的非质子溶剂中的部分溶解度阻碍了其在低温溶液处理 PSCs 中的应用。在这项工作中,我们引入了一种新的方法来修饰 TiO2 层,该方法源自纳米颗粒(NPs)油墨。原子力显微镜表征表明,所得 ETL 是由富勒烯连接的 TiO2-NPs 网络。有趣的是,这种表面修饰通过提高电荷转移来改善钙钛矿的底部界面,同时通过减少表面陷阱态来改善顶部钙钛矿界面,从而增强与 p 型缓冲层的接触。结果,刚性 PSC 达到了 17.2%的功率转换效率(PCE),而柔性 PSC 则表现出显著稳定的 12.2%的 PCE,证明了该方法在进一步扩大 PSC 器件规模方面的应用潜力。