Li Longbiao
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, No. 29, Yudao St., Nanjing 210016, China.
Materials (Basel). 2015 Dec 9;8(12):8539-8560. doi: 10.3390/ma8125474.
The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, , fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted.
利用从疲劳滞后回线导出的损伤参数、疲劳滞后模量和疲劳滞后损耗能,研究了正交铺层C/SiC陶瓷基复合材料(CMC)在室温及800℃空气中循环疲劳载荷作用下的损伤演化和寿命预测。实验得到的疲劳滞后模量和疲劳滞后损耗能随循环次数增加而降低,这归因于90°铺层中的横向裂纹、0°铺层中的基体裂纹和纤维/基体界面脱粘、室温下的界面磨损以及800℃空气中的界面和碳纤维氧化。建立了疲劳滞后回线、疲劳滞后模量和疲劳滞后损耗能之间的关系。通过将实验疲劳滞后损耗能与理论计算值进行比较,估算了不同循环次数对应的纤维/基体界面剪应力。结果发现,由于热解碳(PyC)界面相和碳纤维的严重氧化,800℃空气中的降解速率比室温下快得多。将纤维断裂模型与界面剪应力降解模型以及纤维强度降解模型相结合,可以确定不同疲劳峰值应力下纤维断裂分数与循环次数的关系。预测了正交铺层C/SiC复合材料在室温及800℃空气中的疲劳寿命S-N曲线。