Suppr超能文献

使用视觉控制神经振荡器的节奏性球弹跳模型。

Model of rhythmic ball bouncing using a visually controlled neural oscillator.

作者信息

Avrin Guillaume, Siegler Isabelle A, Makarov Maria, Rodriguez-Ayerbe Pedro

机构信息

Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette France;

CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay, France; and.

出版信息

J Neurophysiol. 2017 Oct 1;118(4):2470-2482. doi: 10.1152/jn.00054.2017. Epub 2017 Aug 9.

Abstract

The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment.

摘要

本文研究了中枢模式发生器动力学的感觉驱动调制,这种调制有望在有节奏的混合任务中重现人类行为。我们提出了一个人类感觉运动行为的理论模型,该模型能够解释从抛球任务中观察到的数据。这种新颖的控制架构由一个松冈神经振荡器组成,它通过视觉感觉反馈与环境耦合。通过比较模拟试验和记录试验,量化了该架构在存在干扰的情况下在抛球任务中重现类人表现的能力。结果表明,人类对该任务的视觉控制是在线实现的。自适应行为通过对由节奏模式发生器、肌肉骨骼系统和环境相互作用产生的极限环进行参数和状态控制而成为可能。该研究表明,基于由视觉信息控制的神经振荡器的行为模型能够在有节奏的抛球任务中,相对于感觉信息准确地重现人类在运动动作中的调制。从神经肌肉骨骼系统与环境之间的相互作用中产生的模型吸引子动力学满足了任务要求、环境约束和人类行为选择,而无需依赖运动规划和明确的环境内部模型。

相似文献

1
Model of rhythmic ball bouncing using a visually controlled neural oscillator.
J Neurophysiol. 2017 Oct 1;118(4):2470-2482. doi: 10.1152/jn.00054.2017. Epub 2017 Aug 9.
2
The self-organization of ball bouncing.
Biol Cybern. 2018 Dec;112(6):509-522. doi: 10.1007/s00422-018-0776-8. Epub 2018 Aug 23.
3
Complementary spatial and timing control in rhythmic arm movements.
J Neurophysiol. 2019 Apr 1;121(4):1543-1560. doi: 10.1152/jn.00194.2018. Epub 2019 Feb 27.
4
Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.
J Neurophysiol. 2014 Mar;111(6):1286-99. doi: 10.1152/jn.00140.2013. Epub 2013 Dec 26.
5
Passive vs. active control of rhythmic ball bouncing: the role of visual information.
J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):729-50. doi: 10.1037/a0016462.
6
Actively tracking 'passive' stability in a ball bouncing task.
Brain Res. 2003 Aug 22;982(1):64-78. doi: 10.1016/s0006-8993(03)02976-7.
7
Comparative study of forced oscillators for the adaptive generation of rhythmic movements in robot controllers.
Biol Cybern. 2019 Dec;113(5-6):547-560. doi: 10.1007/s00422-019-00807-8. Epub 2019 Oct 1.
8
Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing.
Exp Brain Res. 2013 May;226(4):603-15. doi: 10.1007/s00221-013-3475-7. Epub 2013 Mar 21.
9
Passive sensorimotor stimulation triggers long lasting alpha-band fluctuations in visual perception.
J Neurophysiol. 2018 Feb 1;119(2):380-388. doi: 10.1152/jn.00496.2017. Epub 2017 Oct 18.
10
A cardioid oscillator with asymmetric time ratio for establishing CPG models.
Biol Cybern. 2018 Jun;112(3):227-235. doi: 10.1007/s00422-018-0746-1. Epub 2018 Jan 13.

引用本文的文献

1
Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations.
PLoS One. 2023 Dec 14;18(12):e0295640. doi: 10.1371/journal.pone.0295640. eCollection 2023.
2
Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking.
Front Neurorobot. 2018 Jun 8;12:29. doi: 10.3389/fnbot.2018.00029. eCollection 2018.

本文引用的文献

1
Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information.
Exp Brain Res. 2016 Jan;234(1):173-83. doi: 10.1007/s00221-015-4443-1. Epub 2015 Sep 26.
2
Synchronization to a bouncing ball with a realistic motion trajectory.
Sci Rep. 2015 Jul 7;5:11974. doi: 10.1038/srep11974.
3
Synchronization to auditory and visual rhythms in hearing and deaf individuals.
Cognition. 2015 Jan;134:232-44. doi: 10.1016/j.cognition.2014.10.018. Epub 2014 Nov 19.
4
On-line and model-based approaches to the visual control of action.
Vision Res. 2015 May;110(Pt B):190-202. doi: 10.1016/j.visres.2014.10.008. Epub 2014 Oct 20.
5
The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
IEEE Trans Haptics. 2015 Apr-Jun;8(2):222-34. doi: 10.1109/TOH.2014.2375173. Epub 2014 Nov 26.
6
The coupling of vision with locomotion in cortical blindness.
Vision Res. 2015 May;110(Pt B):286-94. doi: 10.1016/j.visres.2014.04.015. Epub 2014 May 14.
7
Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.
J Neurophysiol. 2014 Mar;111(6):1286-99. doi: 10.1152/jn.00140.2013. Epub 2013 Dec 26.
8
Major changes in a rhythmic ball-bouncing task occur at age 7 years.
PLoS One. 2013 Oct 2;8(10):e74127. doi: 10.1371/journal.pone.0074127. eCollection 2013.
9
The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization.
Front Hum Neurosci. 2013 Jun 10;7:253. doi: 10.3389/fnhum.2013.00253. eCollection 2013.
10
Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing.
Exp Brain Res. 2013 May;226(4):603-15. doi: 10.1007/s00221-013-3475-7. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验