Avrin Guillaume, Siegler Isabelle A, Makarov Maria, Rodriguez-Ayerbe Pedro
Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette France;
CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay, France; and.
J Neurophysiol. 2017 Oct 1;118(4):2470-2482. doi: 10.1152/jn.00054.2017. Epub 2017 Aug 9.
The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment.
本文研究了中枢模式发生器动力学的感觉驱动调制,这种调制有望在有节奏的混合任务中重现人类行为。我们提出了一个人类感觉运动行为的理论模型,该模型能够解释从抛球任务中观察到的数据。这种新颖的控制架构由一个松冈神经振荡器组成,它通过视觉感觉反馈与环境耦合。通过比较模拟试验和记录试验,量化了该架构在存在干扰的情况下在抛球任务中重现类人表现的能力。结果表明,人类对该任务的视觉控制是在线实现的。自适应行为通过对由节奏模式发生器、肌肉骨骼系统和环境相互作用产生的极限环进行参数和状态控制而成为可能。该研究表明,基于由视觉信息控制的神经振荡器的行为模型能够在有节奏的抛球任务中,相对于感觉信息准确地重现人类在运动动作中的调制。从神经肌肉骨骼系统与环境之间的相互作用中产生的模型吸引子动力学满足了任务要求、环境约束和人类行为选择,而无需依赖运动规划和明确的环境内部模型。