Suppr超能文献

Escherichia coli H+-ATPase: loss of the carboxyl terminal region of the gamma subunit causes defective assembly of the F1 portion.

作者信息

Miki J, Takeyama M, Noumi T, Kanazawa H, Maeda M, Futai M

出版信息

Arch Biochem Biophys. 1986 Dec;251(2):458-64. doi: 10.1016/0003-9861(86)90352-8.

Abstract

Mutant genes for the gamma subunit of H+-translocating ATPase (H+-ATPase) were cloned from eight different strains of Escherichia coli isolated in this laboratory. Determination of their nucleotide sequences revealed that they are amber nonsense mutations: a Gln codon at position 15, 158, 227, 262, and 270, respectively, was replaced by a termination codon in these strains. As terminal Met is missing in the gamma subunit, these results indicate that these strains are capable of synthesizing fragments of gamma subunits of 13, 156, 225, 260, and 268 amino acid residues, respectively. Studies on the properties of membranes of these strains suggested the importance of the region between Gln 269 and the carboxyl terminus (residue 286) for forming a stable F1 complex with ATPase activity and the region between Gln 226 and Gln 261 for normal interaction of F1 with F0. The sequence from Gln 261 to Gln 269 also seemed to be important for stability of F1 assembly on the membranes. The high frequency of the nonsense mutations suggested that the number of essential residues is limited in this subunit. Comparison of the homologies of the amino acid sequences of the gamma subunits from four different sources confirmed this notion: 19% of amino acid residues are identically conserved in these four strains, and the conserved regions are the amino terminal and carboxyl terminal regions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验