Oron Shaul, Dekel Tali, Xue Tianfan, Freeman William T, Avidan Shai
IEEE Trans Pattern Anal Mach Intell. 2018 Aug;40(8):1799-1813. doi: 10.1109/TPAMI.2017.2737424. Epub 2017 Aug 9.
We propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs)-pairs of points in source and target sets that are mutual nearest neighbours, i.e., each point is the nearest neighbour of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset while using different types of features.
我们提出了一种用于在无约束环境中进行模板匹配的新方法。其实质是最佳伙伴相似度(BBS),这是一种用于两组点之间的有用、稳健且无参数的相似度度量。BBS基于计算最佳伙伴对(BBP)的数量,即源集和目标集中互为最近邻的点对,也就是说,每个点都是另一个点的最近邻。BBS具有几个关键特性,使其能够抵御复杂的几何变形和大量离群值,比如由背景杂波和遮挡产生的离群值。我们研究了这些特性,提供了对其合理性的统计分析,并在使用不同类型特征的具有挑战性的真实世界数据集上证明了BBS始终能取得成功。